_\)r _\) AT32F403 Battery Powered Domain Application

ANO0003
Application Note

AT32F403 Battery Powered Domain Application

Introduction

The battery powered domain of AT32F403 series MCUs contains RTC, battery powered data register
and other features. The RTC interface is used to realize calendar and clock features. This application

note introduces basic functions of RTC and some application cases.

Note: The corresponding code in this application note is developed on the basis of V2.x.x BSP provided by

Artery. For other versions of BSP, please pay attention to the differences in usage.

Applicable product:

Part number

AT32F403 series

2022.02.11

Ver 2.0.0

-7 AT32F403 Battery Powered Domain Application

Contents
1 RTC iNtrodUCioNoooiiiii s 6
2 RTC FUNCHIONS ... 7
P B o= To 15 (=T = Vol of LTSRN 7
Y O [0 T Q=T =Y 1 1] o [TSP 8
PR B 07 =1 o[F= | 10
P\ = 1 o TP PTTERPRTTTRTRRRIN 11
2.5 Counter value OVEIMIOW...........uuuiiiiiiiiiiiii s 12
P2 ST 111 (= U o) PSRRI 13
3 Battery powered domain...............ooouiiiiiiiiiiii 16
3.1 Battery powered regiSters.o 16
3.2 RTC CAlDratioNueuiiiiiiiiiii e 16
3.3 TampPer det@CHONcooiiiiiiii e 17
3.4 EVENE OULPUL .. 18
4 Notes 0N RTC USAQE..........oooviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee ettt eeeees 19
4.1 Read/write operation to battery powered registerscooooiiiiiiiiiiiiiiiiiiiis 19
4.2 Notes on sSBPWEN bit operation.............coooovuiiiiiiiiiiiiiiii e 20
5 Case 1: Use of calendar and alarm featuresccccoiiiiiiiiiiiiiiiiiiiiii, 21
o0 I o U o e 1o o 01 Z= T YT 21
5.2 ReSOUrCES Preparationoo o iiiiiiiiiiie et e e 21
5.3 SOftWare deSIGN.....oooiiiiiiiiiei s 21
5.4 TeSEIESUIR ... e 24
6 Case 2: Use LICK clock and calibrateoooooiii 24
6.1 FUNCHON OVEIVIEW ..ot e e e e e e e 24
6.2 ReSOUrCES Preparationc.oo it 24
6.3 SOftWArE AESIGN....ceiiiiiiiii s 24
G =Y =] U L S 26

2022.02.11 2 Ver 2.0.0

?I_ ? AT32F403 Battery Powered Domain Application

7 Case 3: Read/write operation to battery powered registers............................ 27
7.1 FUNCHON OVEIVIEW ...t e e e e et e e e e e e e 27
7.2 ReS0oUrces Preparationiiiiiiiiiii i 27
AR IS 1o V= T (=R o (=] o o USSP 27
A 1= 0 =1 U L USSP 28
8 Case 4: Tamper detectioncccooiiiii i 29
8.1 FUNCHION OVEIVIEW ...t e e e 29
8.2 REeSOUrCEs Preparationiii i 29
8.3 SOftWAre dESIGN.....uuiiiiiiiiiiiiiiii s 29
G T S =Y (=1 U | | S 31
9 ReVISION hiStOry ... 32

2022.02.11 3 Ver 2.0.0

1=l

5

AT32F403 Battery Powered Domain Application

List of Tables

2022.02.11

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.

L O (=0 153 =Y PRSP 7
HEXT PreSCaler VAIUEScoocooiiiiieieee ettt e e e e e e e e e e e e st e e e e e e e e s nnnnnnaees 8
Comparisons Of CIOCK SOUICESccciiuiiiiiiiiiii ettt st e e e e e e aaaeee s 9
Example of prescaler SEtINGS.cooo i 9
RTC wakeup from [OW-pOWET MOGES.......ccuuiiiiiiiiie ettt 14
INTEITUPE CONEIOL e e e e s e e e e e e e e nnnr e e 14
Events and corresponding interrupt VECLOrSoooveiiiiiiiie e 14
Document reViSion NISTOIY.........uuiiiiiiee e e e e e e e 32

4 Ver 2.0.0

?r ? AT32F403 Battery Powered Domain Application

List of Figures

(1o [0 (=00 I = IO o] (o T3 [qe [=T | - T o ¢ SRR 6
Figure 2. RTC CIOCK SITUCIUIE ...t e e e e e e s e e e e e e e e ennnes 8
Figure 3. Calendar CONVEISIONccoiiiiiiiiiiiiee ettt ettt ettt e et e e e s s bt e e s snbe e e e s enbeeaessnneeeaeaan 10
Figure 4. Alarm mMatChiNg..........ooo i e e e e e e e e e nnneeeeaeaeeas 12
Figure 5. Example of counter value overflow (division value=4)...........c.ccccoeiieiiiiiiiiiniiiee e 13
Figure 6. RTC Calibrationoouiiiiiiiie ettt e e e e s sareeaeeae 17
[T [0 I =T] 1= o (=] (= Tex 1 o] o OSSR 17
T [e T =T o | o TU 1 o 11 | SRR 18

2022.02.11 5 Ver 2.0.0

1?[? AT32F403 Battery Powered Domain Application

1

—
2022.02.11

RTC introduction

The real-time clock has an internal 32-bit incremental counter. The RTC module is in battery
powered domain, which means that it keeps running and free from the influence of system reset
and VDD power-off as long as Vgar is powered.

It supports the following features:

Calendar: 32-bit counter, with year, month, day, hour, minute and second through conversion
Clock

Tamper detection

Calibration

Figure 1. RTC block diagram

1.2V power domain Powered in VBAT domain
Standby mode RTC TA

TAF RTC_Alarm é

L [OvEF e RICOveflow | pre ont

Not powered in
Standby mode

A
LN_CLK

Reload
TSF RITE_Second RTC_DIVCNT |« RTC_DIV

) APB '
RTC registers interface|
1

RTC_CLK

\d
NVIC interrupt controller

Not powered in
Standby mode

PCLK1

| L]
6 Ver 2.0.0

AT32F403 Battery Powered Domain Application

2022.02.11

RTC functions

Register access

Register write protection

RTC registers are write-protected after power-on reset. It can be configured only when the write
protection is disabled.

The following procedures are recommended:
1) Enable PWC interface clock
crm_periph_clock _enable(CRM_PWC_PERIPH_CLOCK, TRUE);

2) Enable BPR interface clock
crm_periph_clock_enable(CRM_BPR_PERIPH_CLOCK, TRUE);

3) Disable battery powered domain write protection

pwc_battery powered_domain_access(TRUE);

RTC register synchronization
RTC consists of a RTC counter logic in battery powered domain and an APB1 interface; therefore,
there is a synchronization circuit for write/read access to RTC registers.

— Write access to registers: A new value can be written to the RTC registers only when the
previous RTC configuration is completed (CFGF = 1).

— Read access to registers: When the value is uploaded from the battery powered domain to the
APB1 interface, set UPDF=L1. It is possible that the RTC registers are not fully synchronized if a
system reset or power reset has occurred or the microcontroller has woken up from Standby or
Deepsleep mode. At this time, clear UPDF flag by software and wait until UPDF=1; otherwise,
an error value is returned.

RTC synchronization correlation functions

Wait until the previous RTC register configuration is completed (before write access to the register)

void rtc_wait_config_finish(void);

Wait until the RTC register update is completed (before read access to the register)

void rtc_wait_update_finish(void);

Write access to RTC registers

To enable write operation to RTC_DIV, RTC_TA and RTC_CNT registers, the first step is to enter
configuration mode (CFGEN = 1). Setting CFGEN = 0 to exit configuration mode, and values in
these registers are actually written to the battery powered domain, which takes at least three
RTCCLK cycle to complete.

The write protection states and conditions for write operation to RTC registers are listed below.

Table 1. RTC registers

Register Write-protected Enter configuration mode
RTC_CTRLH, RTC_CTRLL Yes No
RTC_DIVH, RTC_DIVL Yes Yes
- 7 - = Ver2.00

ll?l_ ? AT32F403 Battery Powered Domain Application

RTC_DIVCNTH, RTC_DIVCNTL - -
RTC_CNTH, RTC_CNTL Yes Yes
RTC_TAH, RTC_TAL Yes Yes

Reset of registers

RTC registers are in the battery powered domain. Set the bit BPDRST in CRM_BPDC register to
trigger battery powered domain reset, or write the default value to each register through library
functions to perform a reset.

RTC reset correlation functions

Battery powered domain reset

void crm_battery _powered_domain_reset(confirm_state new_state);

or function:

void bpr_reset(void);

Both functions have the same features, except that bpr_reset() encapsulates the previous function.

2.2 Clock settings

Clock source select

RTC clock source is selected and input to the divider, and finally a 1 Hz clock is obtained to update
the calendar.

Figure 2. RTC clock structure

RTCSEL

- T .£.

RTC clock source can be selected from:
— LEXT: low-speed external oscillator, generally 32.768 kHz;

— LICK: low-speed internal RC oscillator, typical frequency of 40 kHz (within the range of 30~60
kHz); see the datasheet for detalils;

— HEXT_DIV: divided high-speed external oscillator; prescaler values are listed below.

Table 2. HEXT prescaler values

Part number Prescaler value
AT32F403Axx Fixed 128
AT32F407xx Fixed 128

— e— = —
2022.02.11 8 Ver 2.0.0

-7 AT32F403 Battery Powered Domain Application

AT32F413xx Fixed 128

Table 3. Comparisons of clock sources

Clock)
Frequency Advantages Disadvantages
source
It has the highest accuracy, and can workiOne crystal oscillator is
LEXT 32.768 kHz when it is battery powered or in low-powerirequired, thus increasing the
modes. cost and PCB wiring area.
It can work when it is battery powered or in
Typical: 40 kHz low-power modes, without the need for one)
LICK]] ~_ |Low time accuracy
Range: 30 kHz~60 kHz (crystal oscillator and reducing PCB wiring
area.
It has a high accuracy (depending on the o
]]]) Not able to work when it is
Main crystal oscillator faccuracy of the main crystal oscillator),)
HEXT] B battery powered or in low-power
frequency without the need for one additional crystal q
modes
oscillator and reducing PCB wiring area.

RTC clock source setting correlation functions

Select and enable the corresponding clock

void crm_clock_source_enable(crm_clock _source_type source, confirm_state new_state)

Select RTC clock

void crm_rtc_clock_select(crm_rtc_clock_type value)

Enable RTC clock

void crm_rtc_clock _enable(confirm_state new_state)

Prescaler settings
The RTC_CLK is divided by a 20-bit prescaler to obtain a 1 Hz clock. The formula is as follows:

frrc ax

DIV +1

finz =

Table 4. Example of prescaler settings

Clock source Frequency DIV Calendar clock
LEXT 32.768 kHz 32767 1Hz
LICK Typical 40 kHz 39999 1Hz
HEXT 8 MHz, divided by 128 62499 1Hz

RTC divider setting correlation functions

Set RTC prescaler

void rtc_divider_set(uint32_t div_value);

Obtain RTC prescaler value

2022.02.11 9 Ver 2.0.0

,’I?I' ? AT32F403 Battery Powered Domain Application

uint32_t rtc_divider_get(void);

Example of RTC clock initialization

/* Enable LEXT clock */
crm_clock_source_enable(CRM_CLOCK_SOURCE_LEXT, TRUE);

/* Wait until the LEXT clock is stable */
while(crm_flag_get(CRM_LEXT_STABLE_FLAG) == RESET)
{

1

/* Select LEXT clock as the RTC clock */
crm_rtc_clock_select(CRM_RTC_CLOCK_LEXT);

/* Enable RTC clock */
crm_rtc_clock_enable(TRUE);

* Configure RTC divider: DIV=32767 */
rtc_divider_set(32767);

2.3 Calendar

The RTC has an internal 32-bit counter that is increased by one at each second. In other words,
this counter serves as a second clock. The current second value can be converted into time and
date (year, month, date, week, hour, minute and second) to provide a calendar function. The time
and date can be modified by modifying the counter value.

It can generate a second interrupt as required. If second interrupt is enabled (TSIEN=1), a second
interrupt is generated every second.

Figure 3. Calendar conversion

calendar

EEEN NN
1

second

— e— = —
2022.02.11 10 Ver 2.0.0

_\)r _\) AT32F403 Battery Powered Domain Application

Counter correlation functions

Set RTC counter value

void rtc_counter_set(uint32_t counter_value);

Obtain RTC counter value

uint32_t rtc_counter_get(void);

Convert second clock to calendar

First, set a starting time. For example,1970-1-1 00:00:00 corresponds to “0” of the counter. When
the counter value is 200000, convert as follows:

— Days: 200000 / 86400 = 2

— Hours: (200000 % 86400) / 3600=7
— Minutes: (200000 % 3600) / 60= 33
— Seconds: 200000 % 60 = 20

Therefore, the converted date is 1970-1-3 07:33:20. The calendar can be converted to second
clock in a similar way.

In project\at_start_f403a\examples\rtc\calendar in BSP, there are available functions for conversion
between second clock and calendar.

Set calendar value (convert calendar to second clock)

uint8_t rtc_time_set(calendar_type *calendar);

Parameters in the calendar_type structure are:
— year

— month

— day

— hour

— min

— sec

— week

Read calendar value (convert second clock to calendar)

void rtc_time_get(void);

2.4 Alarm

The RTC alarm value is 32-bit. When the alarm value is equal to the counter value, an alarm event
occurs (TAF=1). When the alarm interrupt is enabled, an alarm interrupt is generated.

2022.02.11 1" Ver 2.0.0

ll?l_ ? AT32F403 Battery Powered Domain Application

Figure 4. Alarm matching

alarm

Icom pare

second

Alarm correlation functions

Alarm value setting function

void rtc_alarm_set(uint32_t alarm_value);

Interrupt enable function

void rtc_interrupt_enable(uint16_t source, confirm_state new_state);

Flag get function

flag_status rtc_flag_get(uint16_t flag);

Flag clear function

void rtc_flag_clear(uint16_t flag);

2.5 Counter value overflow

Since the counter value is 32-bit, value overflow may occur. When the counter value OxFFFFFFFF
reaches the value 0x00000000, an overflow event occurs and OVFF=1. When the alarm is
enabled, the conversion between second clock and calendar is incorrect due to the overflow event.
In this case, users need to handle value overflow properly.

The maximum time that OxFFFFFFFF can represent is 136 years. For example, if the starting time
is the year of 1975, the value does not overflow until the year of 2106.

- L
2022.02.11 12 Ver 2.0.0

_\)r ? AT32F403 Battery Powered Domain Application

Figure 5. Example of counter value overflow (division value=4)
i i i i i

RTC_CLK | | |

I I I I I
RTC_Second |—! ﬂ |—! ﬂ w |_|_
I I I I I
| | I |
|
RTC_Overflow i ; ; | ; Can be cleared by software
I I I I I
| | | |
| | | |
OVF T t t I f
I I I I I
| | | | |
RTC_CNT | FFFFFFFC | FFFFFFFF)I<
|
I I

FFEFFFFD X FFFFEFFFE 00000000 X 00000001 X
i i

2.6 Interrupt
If alarm, second or overflow interrupt occurs, the RTC interrupt is generated. The following two
configuration modes are supported:

— RTC_IRQn interrupt vector without EXINT line: not able to wake up from DEEPSLEEP and
STANDBY modes

— RTCAlarm_IRQn interrupt vector with EXINT line: able to wake up from DEEPSLEEP and
STANDBY mode

The RTC alarm (no need to wake up from low-power modes), second and overflow interrupts can
be enabled by the following steps:

— Enable the NVIC channel corresponding to RTC interrupt;

— Enable the corresponding RTC interrupt control bit.

The RTC alarm (need to wake up from low-power modes) can be enabled by the following steps:
— Configure EXINT 17 as interrupt mode and enable it; set rising edge as the active edge;
— Enable the NVIC channel corresponding to RTC interrupt;

— Enable the corresponding RTC interrupt control bit.

2022.02.11 13 Ver 2.0.0

o AT32F403 Battery Powered Domain Application

The table below lists the influence of RTC clock source, event and interrupt on wakeup from low-
power modes.

Table 5. RTC wakeup from low-power modes

Wakeup from Wakeup from Wakeup from
Clock source Event
SLEEP DEEPSLEEP STANDBY
Alarm (RTCAlarm_IRQn) S x x
Alarm (RTC_IRQn) S x x
HEXT
Overflow S x x
Second S
Alarm (RTCAlarm_IRQn) S \ S
Alarm (RTC_IRQn \ x x
LICK (IRQn)
Overflow \ X x
Second \ x
Alarm (RTCAlarm_IRQn) S \ S
Alarm (RTC_IRQn) \ X x
LEXT
Overflow \ X x
Second S x x
Table 6. Interrupt control
Interrupt Event flag Interrupt enable bit
Alarm TAF TAIEN
Second TSF TSIEN
Overflow OVFF OVFIEN
Table 7. Events and corresponding interrupt vectors
Event Interrupt vector Interrupt function
Alarm (RTCAlarm_IRQn) RTCAlarm_IRQn RTCAlarm_IRQHandler
Alarm (RTC_IRQn) RTC_IRQn RTC_IRQHandler
Overflow RTC_IRQn RTC_IRQHandler
Second RTC_IRQn RTC_IRQHandler

Interrupt and event correlation functions

Interrupt enable function

void rtc_interrupt_enable(uint16_t source, confirm_state new_state);

Flag get function

flag_status rtc_flag_get(uint16_t flag);

Flag clear function

void rtc_flag_clear(uint16_t flag);

Interrupt configuration example 1: For alarm, use the RTCAlarm_IRQn interrupt vector.

* Configure EXINT line */

2022.02.11 14 Ver 2.0.0

_\)r ? AT32F403 Battery Powered Domain Application

exint_default_para_init(&exint_init_struct);

exint_init_struct.line_enable = TRUE; //enable

exint_init_struct.line_mode = EXINT_LINE_INTERRUPUT, //interrupt mode
exint_init_struct.line_select = EXINT_LINE_17;//EXINT line 17
exint_init_struct.line_polarity = EXINT_TRIGGER_RISING_EDGE;//trigger rising edge

exint_init(&exint_init_struct);

/* Enable alarm interrupt NVIC vector: RTCAlarm_IRQn */
nvic_irq_enable(RTCAlarm_IRQn, 0, 1);

/* Set alarm value */

rtc_alarm_set(seccount);

/* Enable alarm interrupt */
rtc_interrupt_enable(RTC_TA_INT, TRUE);

Interrupt handler
void RTCAlarm_IRQHandler(void)
{

if(rtc_flag_get(RTC_TA_FLAG) != RESET)
{
/* Clear alarm flag */
rtc_flag_clear(RTC_TA_FLAG);

/* Clear EXINT line 17 flag */
exint_flag_clear(EXINT_LINE_17);

Interrupt configuration example 2: For alarm, use the RTC_IRQn interrupt vector.
/* Enable alarm interrupt NVIC vector: RTC_IRQn */
nvic_irq_enable(RTC_IRQn, 0, 1);

/* Set alarm value */

rtc_alarm_set(seccount);

/* Enable alarm interrupt */
rtc_interrupt_enable(RTC_TA_INT, TRUE);

2022.02.11 15 Ver 2.0.0

_\)r ? AT32F403 Battery Powered Domain Application

Interrupt handler
void RTC_IRQHandler(void)

{

if(rtc_flag_get(RTC_TA_FLAG) != RESET)
{

/* Clear alarm flag */
rtc_flag_clear(RTC_TA_FLAG);

Battery powered domain
3.1 Battery powered registers

There are 42 x 16-bit registers in the battery powered domain. These registers can save data when
they are powered only by the battery, and they are reset by battery powered domain reset or a
tamper event, instead of a system reset. Read protection of these registers must be disabled before
register reset, in the same way detailed in Section 2.1.

Battery powered domain data operation correlation functions

Write operation to battery powered data register

void bpr_data_write(bpr_data_type bpr_data, uint16_t data_value);

Read operation to battery powered data register

uint16_t bpr_data_read(bpr_data_type bpr_data);

Battery powered domain reset

void bpr_reset(void);

3.2 RTC calibration

The battery powered domain supports RTC calibration, which is configured through the
RTC_CALVAL register.

2022.02.11 16 Ver 2.0.0

,’I?I' ? AT32F403 Battery Powered Domain Application

Figure 6. RTC calibration

CCOs
/64

ERTC_CAL
/64

RTC CLK

calibration

When the RTC_CLK is 32.768 kHz, the calibration cycle is 22° x RTC_CLK (about 32 seconds). The
CALVAL[7:0] value specifies the number of pulses ignored in 22° x RTC_CLK (maximum 127 pulses
can be ignored), which can slow down the clock in the range of 0~121 ppm.

It is allowed to divide the RTC clock (before or after calibration) by 64 and then output to PC13 pin.

Calibration setting correlation functions

Calibration value setting function

void bpr_rtc_clock_calibration_value_set(uint8_t calibration_value);

Calibration clock output setting function

void bpr_rtc_output_select(bpr_rtc_output_type output_source);

3.3 Tamper detection

The battery powered domain provides a set of TAMPER pin. Once a tamper event is detected, the
TPEF bit will be set to 1, and the RTC_BPRXx register will be cleared accordingly. If the tamper
interrupt is enabled, an interrupt will be generated, with the TPIF bit being set to 1. The tamper
detection pin is fixed to PC13.

Figure 7. Tamper detection

SRR

The tamper detection mode is divided into high-level and low-level detections.

Tamper detection correlation functions

Set tamper detection active level

— e— = —
2022.02.11 17 Ver 2.0.0

:-‘ll ? I-

? AT32F403 Battery Powered Domain Application

3.4

— e—
2022.02.11

void bpr_tamper_pin_active_level_set(bpr_tamper_pin_active_level_type active_level);

Tamper detection enable

void bpr_tamper_pin_enable(confirm_state new_state);

Tamper detection flag get

flag_status bpr_flag_get(uint32_t flag);

Tamper detection flag clear

void bpr_flag_clear(uint32_t flag);

Tamper interrupt enable

void bpr_interrupt_enable(confirm_state new_state);

Event output

The battery powered domain provides a set of MUX outputs. The following events can be output

through PC13 pin:
— Calibration output: output of frequency divided by 64 before/after calibration

— Event output: alarm event, second event

Figure 8. Event output

OUTSEL

- CALOUT

QOutput
PC13

164

/64

RTC CLK |

If the output mode is event output (alarm event, second event), a pulse is output when the
corresponding event occurs, and the pulse width is one RTC clock cycle.

Event output correlation functions

Set and enable event output

void bpr_rtc_output_select(bpr_rtc_output_type output_source);

18

Ver2.0.0

-7 AT32F403 Battery Powered Domain Application

2022.02.11

Notes on RTC usage

Read/write operation to battery powered registers

Before performing read and write operations to battery powered registers (BPR_DT, RTC registers,
and the BPDC register of CRM), enable PWC and BPR clocks, unlock write protection of battery
powered domain (BPWEN=1) and execute the following codes:

/* Enable PWC BPR clock */
crm_periph_clock _enable(CRM_PWC_PERIPH_CLOCK, TRUE);
crm_periph_clock _enable(CRM_BPR_PERIPH_CLOCK, TRUE);

/*Unlock write protection of battery powered domain */

pwc_battery _powered_domain_access(TRUE);

In the below example, enable the PWC and BPR clocks and unlock write protection of battery
powered domain (BPWEN=1), and then read the BPR_DT register, write the BPDC register of CRM
and write the RTC register.

/* Enable PWC and BPR clocks */
crm_periph_clock_enable(CRM_PWC_PERIPH_CLOCK, TRUE);
crm_periph_clock_enable(CRM_BPR_PERIPH_CLOCK, TRUE);

/*Unlock write protection of battery powered domain */

pwc_battery_powered_domain_access(TRUE);

/* Check the RTC for initialization */
if(bpr_data_read(BPR_DATA1) I= 0x1234)
{

/* Reset battery powered registers */

bpr_reset();

/* Enable LEXT clock */
crm_clock_source_enable(CRM_CLOCK_SOURCE_LEXT, TRUE);
/* Wait until the LEXT clock becomes stable */
while(crm_flag_get(CRM_LEXT_STABLE_FLAG) == RESET);

* Select RTC clock source */

crm_rtc_clock_select(CRM_RTC_CLOCK_LEXT);

/* Enable RTC clock */
crm_rtc_clock_enable(TRUE);

19 Ver 2.0.0

_\)r ? AT32F403 Battery Powered Domain Application

/* Waite for RTC register synchronization */

rtc_wait_update_finish();

/* Wait for the completion of the previous register configuration synchronization */

rtc_wait_config_finish();

/* Configure RTC divider */
rtc_divider_set(32767);

/* Wait for the completion of the previous register configuration synchronization */

rtc_wait_config_finish();

/* Set time */

rtc_time_set(calendar);

/* Write the flag to battery powered registers */
bpr_data_write(BPR_DATA1, 0x1234);

4.2 Notes on sBPWEN bit operation
Do not enable or disable the BPWEN bit in the program. If you want to operate BPR data, enable
the PWC clock, BPR clock and BPWEN bit during code initialization.
/* Enable PWC and BPR clocks */
crm_periph_clock_enable(CRM_PWC_PERIPH_CLOCK, TRUE);
crm_periph_clock_enable(CRM_BPR_PERIPH_CLOCK, TRUE);

/* Unlock write protection of battery powered domain */

pwc_battery powered_domain_access(TRUE);

Then, BPR DT can be modified directly (do not enable or disable the BPWEN bit)
bpr_data_write(BPR_DATA1, 0x1234);

2022.02.11 20 Ver 2.0.0

-7 AT32F403 Battery Powered Domain Application

Case 1: Use of calendar and alarm features

5.1 Function overview

Demonstrate the calendar and alarm features.
5.2 Resources preparation

1) Hardware environment
AT-START BOARD of the corresponding part model
2) Software environment
project\at_start_f4xx\examples\rtc\calendar
Note: All projects are built around keil 5. If users want to use them in other compiling environments, please refer to
AT32xxx_Firmware_Library V2.x.x\project\at_start_xxx\templates (such as IAR6/7, keil 4/5) for a simple change.

5.3 Software design

1) Configuration process:
B Enable PWC and BPR clocks;
B Unlock battery powered domain write protection;

B Check if the calendar is initialized (if the conversion between clock and calendar is correct,
the calendar does not need to be initialized; otherwise, initialize the calendar and alarm);

B Print the calendar information every second in the main function;
B Alarm event occurs at 21-05-01 12:00:05.
2) Code

B main function code

int main(void)

{

calendar_type time_struct;

[* Configure NVIC priority group */
nvic_priority_group_config(NVIC_PRIORITY_GROUP_4);

[* Initialize system clock */

system_clock_config();

/* Initialize ATSTART board */
at32_board_init();

/* Initialize the serial port */
uart_print_init(115200);

/* RTC initialization */
time_struct.year =2021;
time_struct.month = 5;

time_struct.date =1;

2022.02.11 21 Ver 2.0.0

][R

AT32F403 Battery Powered

Domain Application

time_struct.hour =12;
time_structmin =0;
time_struct.sec =0;

rtc_init(&time_struct);

/* Alarm initialization */

alarm_init();
printf("initial ok\r\n");
while(1)

{
/* Second updated */

if(rtc_flag_get(RTC_TS_FLAG) != RESET)

{
at32_led_toggle(LED3);

/* Get the current calendar */

rtc_time_get();

/* Print date: Y-M-D */

printf("%d/%d/%d ", calendar.year, calendar.month, calendar.date);

/* Print time: H:M:S */

printf("%02d:%02d:%02d %s\r\n", calendar.hour, calendar.min, calendar.sec,

weekday_table[calendar.week]);

/* Wait for the completion of the previous register configuration synchronization */

rtc_wait_config_finish();

[* Clear second clock flag */
rtc_flag_clear(RTC_TS_FLAG);

/* Wait for the completion of register configuration synchronization */

rtc_wait_config_finish();

B RTC initialization rtc_init function code

{

uint8_t rtc_init(calendar_type *calendar)

/* Enable PWC and BPR clocks */
crm_periph_clock_enable(CRM_PWC_PERIPH_CLOCK, TRUE);
crm_periph_clock_enable(CRM_BPR_PERIPH_CLOCK, TRUE);

2022.02.11

22

Ver2.0.0

?r ? AT32F403 Battery Powered Domain Application

/*Unlock the battery powered domain write protection */
pwc_battery_powered_domain_access(TRUE);

[* Check if RTC is initialized */
if(bpr_data_read(BPR_DATA1) != 0x1234)
{
/* Reset battery powered registers */
bpr_reset();

/* Enable LEXT clock */
crm_clock_source_enable(CRM_CLOCK_SOURCE_LEXT, TRUE);
/* Wait until the LEXT clock becomes stable */
while(crm_flag_get(CRM_LEXT_STABLE_FLAG) == RESET);

/* Select RTC clock source */
crm_rtc_clock_select(CRM_RTC_CLOCK_LEXT);

/* Enable RTC clock */
crm_rtc_clock_enable(TRUE);

/* Wait for RTC register synchronization */
rtc_wait_update_finish();

/* Wait for the completion of the previous register configuration synchronization */

rtc_wait_config_finish();

/* Configure RTC divider*/
rtc_divider_set(32767);

/* Wait for the completion of the previous register configuration synchronization */

rtc_wait_config_finish();

/* Set time */
rtc_time_set(calendar);

/* Write flag to battery powered register */
bpr_data_write(BPR_DATA1, 0x1234);

return 1;

}

else

{

/* Wait for RTC register synchronization */
rtc_wait_update_finish();

/* Wait for the completion of the previous register configuration synchronization */

rtc_wait_config_finish();

2022.02.11 23 Ver 2.0.0

_\)r ? AT32F403 Battery Powered Domain Application

return O;

B Alarm interrupt function code

void RTC_IRQHandler(void)
{
/*Set alarm interrupt flag */
if(rtc_flag_get(RTC_TA_FLAG) != RESET)
{
at32_led_toggle(LED4);

/* Clear alarm interrupt flag */
rtc_flag_clear(RTC_TA_FLAG);

54 Test result

B Information is printed through serial port, and users can get the information from serial
assistant interface on PC.

The calendar information is printed every second in the main function.
An alarm event occurs at 21-05-01 12:00:05; at this time, LED4 is ON.

Case 2: Use LICK clock and calibrate

6.1 Function overview

Select LICK clock as the RTC clock, and use a timer to measure the LICK clock frequency, and
then adjust RTC divider according to the measured frequency, so that to realize time calibration
within a certain range.

6.2 Resources preparation

1) Hardware environment
AT-START BOARD of the corresponding part model
2) Software environment
project\at_start_f4xx\examples\rtc\lick_calibration
Note: All projects are built around keil 5. If users want to use them in other compiling environments, please refer to
AT32xxx_Firmware_Library V2.x.x\project\at_start_xxx\templates (such as IAR6/7, keil 4/5) for a simple change.

6.3 Software design

1) Configuration process
B |[nitialize RTC;
B Configure the timer used to measure LICK frequency;

2022.02.11 24 Ver 2.0.0

<[

5

AT32F403 Battery Powered Domain Application

2022.02.11

B Re-configure RTC divider according to the measured frequency.
2) Code
B main function code

{

int main(void)

tmr_input_config_type tmr_ic_init_structure;

[* Initialize system clock */

system_clock_config();

/* Initialize ATSTART board */
at32_board_init();

/* Initialize serial port */
uart_print_init(115200);

/* RTC initialization */

rtc_configuration();

printf("\r\n\nstart calib\r\n\r\n");

I* Get system clock frequency */

crm_clocks_freq_get(&crm_clocks);

/* Enable the timer */
crm_periph_clock_enable(CRM_TMR5_PERIPH_CLOCK, TRUE);
crm_periph_clock_enable(CRM_IOMUX_PERIPH_CLOCK, TRUE);

/* Connect LICK to the timer */
gpio_pin_remap_config(TMR5CH4_MUX, TRUE);

[* Timer initialization */

tmr_base_init(TMR5, OxFFFF, 0);
tmr_cnt_dir_set(TMR5, TMR_COUNT_UP);
tmr_clock_source_div_set(TMR5, TMR_CLOCK_DIV1);

[* Timer initialization */

tmr_input_default_para_init(&mr_ic_init_structure);
tmr_ic_init_structure.input_channel_select = TMR_SELECT_CHANNEL _4;
tmr_ic_init_structure.input_polarity_select = TMR_INPUT_RISING_EDGE;
tmr_ic_init_structure.input_mapped_select = TMR_CC_CHANNEL_ MAPPED_DIRECT,
tmr_ic_init_structure.input_filter_value = 0;

tmr_input_channel_init(TMRS, &tmr_ic_init_structure, TMR_CHANNEL_INPUT_DIV_1);

/* Initialize variables */

25 Vm

?I_ ? AT32F403 Battery Powered Domain Application

operationcomplete = 0;

/* Enable timer input capture */
tmr_counter_enable(TMR5, TRUE);

[* Clear timer flag */
tmr_flag_get(TMR5, TMR_C4_FLAG);

[* Enable timers */
tmr_interrupt_enable(TMR5, TMR_C4_INT, TRUE);

[* Interrupt initialization */

nvic_configuration();

/* Wait for the completion of measurement*/

while(operationcomplete != 2);

[* Calculate LICK frequency */
if(periodvalue != 0)
{
lickfreq = (uint32_t)((uint32_t)(crm_clocks.apb1_freq * 2) / (uint32_t)periodvalue);

printf("apb1_freq = %d\r\n", crm_clocks.apb1_freq);
printf("period_value = %d\r\n", periodvalue);

printf("lick_freq = %d\r\n", lickfreq);

[* Adjust RTC divider */
rtc_divider_set((lickfreq - 1));

[* Wait for the completion of register write operation */

rtc_wait_config_finish();

/* turn on led2 */

at32_led_on(LED2);

while(1)
{
}

6.4 Test result

B Information is printed through serial port, and users can get the information from serial
assistant interface on PC.

B The measured LICK frequency and division factor are printed on the serial port.

2022.02.11 26 Ver 2.0.0

\,.I \,l
A ¢ A ¢
\

AT32F403 Battery Powered Domain Application

B The calendar information is printed every second.

7 Case 3: Read/write operation to battery powered
registers

7.1 Function overview

Perform read and write operations to battery powered registers (RTC_BPRX).

7.2 Resources preparation

1) Hardware environment
AT-START BOARD of the corresponding part model

2) Software environment

project\at_start_f4xx\examples\bpr\bpr_data

Note: All projects are built around keil 5. If users want to use them in other compiling environments, please refer to

AT32xxx_Firmware_Library_V2.x.x\project\at_start_xxx\templates (such as IAR6/7, keil 4/5) for a simple change.

7.3 Software design

1) Configuration process

B Enable PWC and BPR clocks;

B Unlock the battery powered domain write protection;

B Check if the battery powered domain data is correct;

B Disable PWC and BPR clocks to reduce power consumption.
2) Code

B Main function code

{

int main(void)

/* Initialize system clock */
system_clock_config();

/* Initialize serial port */
uart_print_init(115200);

/* Enable PWC and BPR clocks */
crm_periph_clock_enable(CRM_PWC_PERIPH_CLOCK, TRUE);

crm_periph_clock_enable(CRM_BPR_PERIPH_CLOCK, TRUE);

/* Unlock battery powered domain write protection */
pwc_battery_powered_domain_access(TRUE);

[* Clear tamper detection flag */
bpr_flag_clear(BPR_TAMPER_EVENT_FLAG);

/* Check battery powered domain data */

2022.02.11

27 Ver 2.0.0

?I_ ? AT32F403 Battery Powered Domain Application

if(bpr_reg_check() == TRUE)
{

printf("bpr reg => none reset\r\n");

}

else

{
printf("bpr reg => reset\r\n");

/* Reset battery powered registers */
bpr_reset();

[* Write operation to battery powered registers */
bpr_reg_write();

[* Check battery powered domain data */
if(bpr_reg_check() == TRUE)

{
printf("write bpr reg ok\r\n");

}

else

{
printf("write bpr reg fail\r\n");

while(1)

7.4 Test result

B Information is printed through serial port, and users can get the information from serial
assistant interface on PC.

If data in the register is correct, “bpr reg => none reset” will be printed.
If data in the register is correct, “bpr reg => reset” will be printed.

The calendar information is printed every second in the main function.

2022.02.11 28 Ver 2.0.0

-7 AT32F403 Battery Powered Domain Application

Case 4. Tamper detection

8.1 Function overview

Demonstrate the tamper detection feature. When a rising edge is detected on PC13 pin, the tamper
detection is triggered. If a tamper event occurs, battery powered registers will be cleared.

8.2 Resources preparation

1) Hardware environment
AT-START BOARD of the corresponding part model
2) Software environment
project\at_start_f4xx\examples\bpritamper
Note: All projects are built around keil 5. If users want to use them in other compiling environments, please refer to
AT32xxx_Firmware_Library V2.x.x\project\at_start_xxx\templates (such as IAR6/7, keil 4/5) for a simple change.

8.3 Software design

1) Configuration process

B [nitialize RTC;

B Initialize tamper detection;

B Initialize battery powered registers.
2) Code

B main function code

int main(void)

{
[* Configure NVIC priority group */
nvic_priority_group_config(NVIC_PRIORITY_GROUP_4);

/* Initialize system clock */

system_clock_config();

/* Initialize ATSTART board */
at32_board_init();

[* Tamper interrupt configuration */
nvic_irq_enable(TAMPER_IRQn, 0, 0);

/* Enable PWC and BPR clocks */
crm_periph_clock_enable(CRM_PWC_PERIPH_CLOCK, TRUE);

crm_periph_clock_enable(CRM_BPR_PERIPH_CLOCK, TRUE);

/* Unlock battery powered domain write protection */

pwc_battery powered_domain_access(TRUE);

/* Disable tamper detection function */

bpr_tamper_pin_enable(FALSE);

2022.02.11 29 Ver 2.0.0

][R

AT32F403 Battery Powered Domain Application

2022.02.11

/* Disable tamper interrupt */
bpr_interrupt_enable(FALSE);

[* Set tamper detection pin active low */
bpr_tamper_pin_active_level_set(BPR_TAMPER_PIN_ACTIVE_LOW);

[* Clear tamper detection flag */
bpr_flag_clear(BPR_TAMPER_EVENT_FLAG);

[* Write data to battery powered registers */

bpr_reg_write();

/* Enable tamper interrupt */
bpr_interrupt_enable(TRUE);

/* Enable tamper detection */

bpr_tamper_pin_enable(TRUE);

[* Check the value of battery powered registers */
if(bpr_reg_check() == TRUE)
{
at32_led_on(LED2);
}

else

{
at32_led_off(LED?2);

while(1)
{
}

B Tamper interrupt handler code

void TAMPER_IRQHandler(void)

{
if(opr_flag_get(BPR_TAMPER_INTERRUPT_FLAG) != RESET)

{
/* Check if battery powered registers are cleared */
if(bpr_reg_judge() == 0)
{
[* ok, bpr registers are reset as expected */

at32_led_on(LED3);
}

else

30

Ver2.0.0

?r ? AT32F403 Battery Powered Domain Application

[* bpr registers are not reset */
at32_led_off(LED3);

/* Clear tamper interrupt flag */

bpr_flag_clear(8PR_TAMPER_INTERRUPT_FLAG);

/* Clear tamper detection event flag */
bpr_flag_clear(BPR_TAMPER_EVENT_FLAG);

/* Disable tamper detection */

bpr_tamper_pin_enable(FALSE);

/* Enable tamper detection */

bpr_tamper_pin_enable(TRUE);

8.4 Test result

B Information is printed through serial port, and users can get the information from serial
assistant interface on PC.

B If a tamper event occurs (low level on PC13), LED3 will be ON, indicating that battery powered
registers are cleared.

2022.02.11 31 Ver 2.0.0

?r ? AT32F403 Battery Powered Domain Application

9 Revision history
Table 8. Document revision history
Date Version Revision note
2022.02.11 2.0.0 Initial release

2022.02.11 32 Ver 2.0.0

<[

? AT32F403 Battery Powered Domain Application

2022.02.11

IMPORTANT NOTICE — PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services; ARTERY assumes no liability for

purchasers’ selection or use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous
representation in any forms. If any part of this document involves third party’s products or services, it does NOT imply that ARTERY
authorizes the use of the third party’s products or services, or permits any of the intellectual property, or guarantees any uses of the third

party’s products or services or intellectual property in any way.

Except as provided in ARTERY’s terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty,
relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a
particular purpose (based on the corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other

intellectual property right.

ARTERY’s products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have
specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements
on product function safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other
applications that may cause injuries, deaths or property damages. Since ARTERY products are not intended for the above-mentioned
purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks
caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with

all statutory and regulatory requirements regarding these uses.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will
immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and
ARTERY disclaims any responsibility in any form.

© 2022 ARTERY Technology — All Rights Reserved

33 Ver 2.0.0

	1 RTC introduction
	2 RTC functions
	2.1 Register access
	2.2 Clock settings
	2.3 Calendar
	2.4 Alarm
	2.5 Counter value overflow
	2.6 Interrupt

	3 Battery powered domain
	3.1 Battery powered registers
	3.2 RTC calibration
	3.3 Tamper detection
	3.4 Event output

	4 Notes on RTC usage
	4.1 Read/write operation to battery powered registers
	4.2 Notes on sBPWEN bit operation

	5 Case 1: Use of calendar and alarm features
	5.1 Function overview
	5.2 Resources preparation
	5.3 Software design
	5.4 Test result

	6 Case 2: Use LICK clock and calibrate
	6.1 Function overview
	6.2 Resources preparation
	6.3 Software design
	6.4 Test result

	7 Case 3: Read/write operation to battery powered registers
	7.1 Function overview
	7.2 Resources preparation
	7.3 Software design
	7.4 Test result

	8 Case 4: Tamper detection
	8.1 Function overview
	8.2 Resources preparation
	8.3 Software design
	8.4 Test result

	9 Revision history

