
AT32 Performance Optimization  

2021.12.10 1 Ver 2.0.0 

AN0004 

Application Note 

AT32 Performance Optimization  

 

Introduction 
This application note describes how to improve AT32 performance by software.  

 

Note: The corresponding code in this application note is developed on the basis of V2.x.x BSP provided by 
Artery. For other versions of BSP, please pay attention to the differences in usage. 

 

Applicable products: 

Part number  AT32Fxx  



AT32 Performance Optimization  

2021.12.10 2 Ver 2.0.0 

Contents 

 Overview ................................................................................................................. 5 

 Bin file judgment .................................................................................................... 6 

 Generate bin file ....................................................................................................... 6 

 View bin file size ....................................................................................................... 7 

 SRAM expansion ................................................................................................... 8 

 SRAM demand analysis and trade-offs .................................................................... 9 

 How to expand SRAM configuration ......................................................................... 9 

 Cautions on SRAM expansion .................................................................................. 9 

 Scatter loading ..................................................................................................... 10 

 View map relations ................................................................................................. 10 

 How to implement scatter loading ........................................................................... 12 

 Increase maximum frequency ............................................................................ 14 

 Configuration method ............................................................................................. 14 

 DMA read Flash .................................................................................................... 14 

 Revision history ................................................................................................... 16 



AT32 Performance Optimization  

2021.12.10 3 Ver 2.0.0 

List of Tables 

Table 1. Document revision history .................................................................................................... 16 



AT32 Performance Optimization  

2021.12.10 4 Ver 2.0.0 

List of Figures  

Figure 1. Optimization flowchart .......................................................................................................... 5 

Figure 2. OptionForTarget icon ............................................................................................................ 6 

Figure 3. Compile command ................................................................................................................ 7 

Figure 4. AT32F403A SRAM and zero-wait configuration ................................................................... 8 

Figure 5. AT32F413 SRAM and zero-wait configuration ..................................................................... 8 

Figure 6. AT32F435 SRAM and zero-wait configuration ..................................................................... 8 

Figure 7. SRAM configuration window in Keil environment ................................................................ 9 

Figure 8. Keil compile information output option configuration ......................................................... 10 

Figure 9. Symbol reference ............................................................................................................... 11 

Figure 10. Remove unused sections ................................................................................................. 11 

Figure 11. Symbols ............................................................................................................................ 11 

Figure 12. Memory distribution .......................................................................................................... 12 

Figure 13. sct file edit in Keil .............................................................................................................. 13 

Figure 14. DMA dual buffer model ..................................................................................................... 14 

Figure 15. Handling process of DMA dual buffer ............................................................................... 15 



AT32 Performance Optimization  

2021.12.10 5 Ver 2.0.0 

 Overview 

Performance optimization is the result of multiple tuning. Before this, it is necessary for the user to 

have a deep understanding of the hardware and software structures and parameters of the system. 

For hardware, these include Flash size, SRAM size, ZW and NZW size, maximum frequency and 

other parameters. For software, the user should have a basic understanding of the whole 

procedure, execution time of code and algorithm, frequency of accessing to critical data and other 

information. Then optimize the system step by step according to the actual projects to improve 

performance. Use the following procedures to improve performance: 

1) First, generate a bin file to judge whether the further optimization is needed 

2) Check whether the SRAM needs to be expanded or not 

3) Check the map table to have an overall understanding of the file structure 

4) Adjust the code link structure to implement scatter load 

5) Increase the system operating frequency 

6) Use DMA dual buffer to read more Flash data 

Figure 1 shows a rough flowchart for performance optimization 

Figure 1. Optimization flowchart 

Start optimization

Generate bin file

Is bin f ile greater 

than ZW size?

SRAM and ZW 

demand analysis 

Need to expand 
SRAM?

Scatter  load

Upgrade software 
structure or algorithm

Improve max. 
frequency

DMA dual buffer 
read Flash

End of 
optimization

Y

N

 

 



AT32 Performance Optimization  

2021.12.10 6 Ver 2.0.0 

 Bin file judgment  

 Generate bin file 

In Keil environment, build and compile to generate a binary file for chip programming.  

Use Keil to open a project, and then click on Options for Target icon, as shown below. 

Figure 2. OptionForTarget icon 

 

 

Then, the following window (Figure 3) will appear. Click on User and tick Run #1 under After 

Build/Rebuild, and type in the command line: fromelf.exe --bin --output .\Listings\@L.bin !. 



AT32 Performance Optimization  

2021.12.10 7 Ver 2.0.0 

Figure 3. Compile command  

 

 

 View bin file size 

After compiling, find out the binary bin file generated and check its size. Considering that AT32F4xx 

MCUs (depending on their respective datasheet) come with internal zero-wait storage space, so it 

is unnecessary to optimize the structure of the execution file when the size of the bin file is within 

the zero-wait area. In this case, we focus on the optimization of software architecture and 

algorithm, or increasing maximum frequency to achieve better performance. 

The subsequent sections are written based on the condition when the bin file size exceeds that of 

zero-wait area. These include the optimization of the execution file structure, and SRAM demand 

analysis. 



AT32 Performance Optimization  

2021.12.10 8 Ver 2.0.0 

 SRAM expansion  

AT32F4xx series MCUs contain internal SRAM and zero-wait storage space by default (refer to 

their respective datasheet). However, the user can also reconfigure the size of SRAM and zero-wait 

area according to their special needs, as shown below: 

Figure 4. AT32F403A SRAM and zero-wait configuration  

96 KB

256 KB

224 KB

128 KB

352 KB

SRAM

ZW

Default Expanded

 

Figure 5. AT32F413 SRAM and zero-wait configuration  

32 KB

96 KB

64 KB

64 KB

128 KB

SRAM

ZW

16 KB

112 KB

Default
Expanded 

option 1

Expanded 

option 2

 

Figure 6. AT32F435 SRAM and zero-wait configuration  

384 KB

256 KB

512 KB

128 KB

640 KB

SRAM

ZW

Default Expanded

 



AT32 Performance Optimization  

2021.12.10 9 Ver 2.0.0 

 SRAM demand analysis and trade-offs 

Zero-wait refers to a preloaded storage area located between Flash and SRAM in order to achieve 

quick start and high-speed running. After power-on, the hardware will automatically copy the zero-

wait-sized data from Flash’s start address to the zero-wait area to ensure that the system can 

quickly access to the pre-loaded data during running. 

As a storage area during system run, SRAM is used to store instructions, data, stack and others. 

From this point of view, the larger the size of these two areas, the better they are. To make 

appropriate allocation and trade-offs, it is recommended to expand SRAM configuration in the 

following conditions: 

1) When a bin file is much larger than the size of zero-wait area;    

2) When the frequently-used data is greater than or close to the size of zero-wait area; 

3) There are a large number of process scheduling and temporary variables in OS during system 

run; 

4) There are many nested functions and interrupts and temporary variables during system run. 

 How to expand SRAM configuration  

For SRAM expansion, please refer to AN0026_Extending_SRAM_in_User's_Program. 

 Cautions on SRAM expansion 

When using Keil as a development tool, the default SRAM size is compiled and linked as long as 

Pack file is selected. However, the hardware SRAM resources are adjustable while only one setting 

can be defaulted in Pack, resulting in some differences between actual and default configurations. 

In this example, we use AT32F403A series MCU, while other series are also similar in this regard: 

In project, click on Options for Target and select Target, and the following window will appear: 

Figure 7. SRAM configuration window in Keil environment 

 

The above red outline shows the default SRAM start address and size designated by AT32 Pack 

file, indicating that the software code uses the default SRAM size 0x38000 (224KB) during compile 

and link. According to previous sections, we know that the SRAM size of AT32F403A series MCU 

is 0x18000 (96 KB) by default, which can be expanded to 224 KB. Thus, there are two situations to 

be considered when using At32 Pack file. 

a) When SRAM expansion mode (224 KB) is used, the running address linked after software 

compiling is in consistent with its physical address, so no problem would happen.  



AT32 Performance Optimization  

2021.12.10 10 Ver 2.0.0 

b) When SRAM default mode (96 KB) is used, no problem would occur either as long as the RAM 

requirements in software code are less than 96 KB or when SRAM requirements are between 

96 KB and 224 KB. However, because the running address linked does not match the actual 

physical address, an error would take place when this bin file is downloaded to MCU to run, 

which is what we should pay attention to during use. To avoid this happen, either change the 

above SRAM size marked in red to 0x18000 or expand SRAM to 224 KB to ensure that the 

physical SRAM size is the same as the one set in Keil.  

 Scatter loading  

Code scatter loading can be used to improve execution frequency and performance by adjusting 

the link structure of execution files. This requires the user to gain a good command of the address 

distribution and size of storage space. 

 View map relations  

The purpose of learning map relation is to have a better understanding of the composition and 

distribution structure of executable files so as to be prepared well for subsequent running and 

scatter loading. 

In Keil, after compiling source code, the linker would generate a map file while linking various target 

files. This file mainly contains cross-link information, so that the user can understand cross 

reference among various symbols and get complete information such as Code, RO Data, RW Data 

and ZI Data. This includes “Cross Reference”, “Unused Sections Info”, “Symbols”, “Memory Map’, 

“Totals Info” and so on. Keil project configuration generates map information by default, with the 

detailed configuration mode as follows:  

Figure 8. Keil compile information output option configuration 

 
 



AT32 Performance Optimization  

2021.12.10 11 Ver 2.0.0 

Select Options for Target and click on Listing, the user can choose which kind of information needs 

to be output in a map file according to their needs.  

After compiling and generating a map file, the user can open and view map information with 

Notepad.  

1) Cross reference  

This section gives a full list of symbol reference between *.o files. Because *.o files are compiled 

and generated by .s or c/c++ source file, it is independent between files and sections with a file, 

which are linked by a linker through cross reference between them, with the link details recorded 

here, as shown in Figure 9.  

Figure 9. Symbol reference  

 

The sentence in red means that system_clock_config function in at32f403a_407_clock.c file calls 

the crm_reset function in at32f403a_407_crm.c file. 

2) Unused sections info 

This part lists the unused sections in a project found during link. These unused sections will be 

removed, which means that the unused sections are not added into *.axf files, instead of being 

deleted from *.o files. This operation can prevent these unused data from occupying program 

space, as shown in Figure 10.  

Figure 10. Remove unused sections 

 

These 4 bytes of unused sections in the at32f403a_407.o target file will not be linked to the final 

*.axf file. 

3) Symbols 

It is shown in Figure 11. 

Figure 11. Symbols 

 

__Vectors is the symbol name, and refers to the vector table address here; 0x08000000 means the 

corresponding address of the __Vectors symbol. 

4) Memory map 

This table gives a full list of the storage address (loading address) of each section, and execution 

address and size for each section, as shown in Figure 12. 



AT32 Performance Optimization  

2021.12.10 12 Ver 2.0.0 

Figure 12. Memory distribution  

 

The part in red means that the RW-data specified as the .ARM.__at_0x20000000 section in the 

main.o target file is stored in address 0x0801803C of ROM. After the system runs, load its 

initialization data to address 0x20000000 of RAM and then execute, with the length of 0x4 bytes. 

Combined with the example demo code, this means that after compiling all the variables of 

rw_temp with the specified address in main.c, the initialization value 10 is stored in address 

0x0801803C in Flash, and after system running, it is loaded to address 0x20000000 of RAM. 

From this map file, we know that it provides detailed information about the storage address of each 

section and the load address of RW-data in RAM. But these load addresses can be configured by 

modifying the scatter file *.sct through the use of (__attribute__) in a code. More sophisticated 

control can be implemented according to the frequency of access to code or data so as to achieve 

the optimization of code load structures. 

 

 How to implement scatter loading  

To implement scatter loading, there are two options in Keil. The first one is to use attribute in a 

code, mainly used in the scatter loading for functions, arrays and variables. The other is to 

modify .sct files, mainly used in the scatter loading of the whole target files. It is recommended to 

use attribute to achieve scatter loading because it is flexible, easy-to-read and convenient. Refer to 

the following content on how to scatter load the functions, arrays, variables and files. For demo, 

please refer to project\at_start_f403a\scatter. 

Method 1: Load a function to a specified location   

For example, the button_isr function in the main.c file is loaded to 0x08018000, and the user can 

specify the button_isr function at the function definition in .c file.  

 

Method 2: Load array to a specified location  

 

Method 3: Load a variable to a specified location  

For example, c code can be directly modified as follows:  

 

Method 4: Load a target file to a specified location  

When performing scatter load in Keil by modifying .sct files, the project configuration should be 

void button_isr(void) __attribute__ ((section(".ARM.__at_0x08018000"))); 

uint8_t rw_data[2] __attribute__ ((section(".ARM.__at_0x20000010"))) = {0x1, 0x2}; 

const uint32_t ro_temp __attribute__ ((section(".ARM.__at_0x08010000"))) = 10;     //RO 

uint32_t rw_temp __attribute__ ((section(".ARM.__at_0x20000000"))) = 10;          //RW 



AT32 Performance Optimization  

2021.12.10 13 Ver 2.0.0 

adjusted as follows. For more information on how to modify .sct file, please refer to .sct grammar 

rule. 

Figure 13. sct file edit in Keil 

 

Where, Use Memory Layout from Target Dialog is ticked by default, so it should be unticked. Go to 

Scatter File and click on Edit to start editing .sct file. 

For example, scatter load the target file of at32f403a_407_board.c. 

; ************************************************************* 

; *** Scatter-Loading Description File generated by uVision *** 

; ************************************************************* 

 

LR_IROM1 0x08000000 0x00020000  {    ; load region size_region 

  ER_IROM1 0x08000000 0x00020000  {  ; load address = execution address 

   *.o (RESET, +First) 

   *(InRoot$$Sections) 

   .ANY (+RO) 

   .ANY (+XO) 

  } 

  RW_IRAM1 0x20000000 0x00038000  {  ; RW data 

   .ANY (+RW +ZI) 

  } 

} 

 

LR_IROM2 0x08020000 0x00020000  {    ; load region size_region 

  ER_IROM2 0x08020000 0x00020000  {  ; load address = execution address 

   at32f403a_407_board.o (+RO) 

  } 

} 



AT32 Performance Optimization  

2021.12.10 14 Ver 2.0.0 

The LR_IROM2 area indicates that the target file compiled and generated by 

at32f403a_407_board.c is loaded to address 0x08020000, and the LR_IROM2 area is 

0x00020000. In other words, after linking the target file compiled and generated by 

at32f403a_407_board.c to 128 KB Flash, the area size is 128 KB.  

 Increase maximum frequency  

Increasing maximum frequency is mainly aimed at improving clock frequency of MCU core and the 

corresponding buses. The clock period for each instruction executed by core is fixed, so the 

improvement of max frequency can reduce the executing time of each instruction. That’s why we 

can improve system performance by increasing max frequency. 

 Configuration method 

Please refer to AN0082_AT32F403A_407_CRM_Start_Guide for more information on 

configuration. 

 DMA read Flash 

Based on previous sections, AT32F4xx series MCU has a certain size of zero-wait area. When 

MCU is powered, it would automatically load a zero-wait-sized data from Flash start address into 

the zero-wait storage area to ensure rapid read operation. But the data outside Flash zero-wait 

area can only be read through Flash access process, which is slower in speed compared to zero-

wait area or SRAM, and the larger the data, the slower it is. To cope with this issue, we provide the 

following proposals to achieve rapid access to data outside Flash zero-wait area. 

The model is shown below: 

Figure 14. DMA dual buffer model 

DMA CPU

buffer1 buffer2

fl
as

h

 

To minimize the impact on CPU execution and on-going data processing, read Flash operation is 

performed by DMA and alternate use of dual buffer. The general work flow is as follows: 



AT32 Performance Optimization  

2021.12.10 15 Ver 2.0.0 

Figure 15. Handling process of DMA dual buffer  

Start

Configure DMA

Enable buffer1 
transfer

Is buffer1 transfer 

completed?

Enable buffer2 
transfer

Handle buffer1 data

Is buffer2 transfer 

completed?

Enable buffer1 
transfer

Handle buffer2 
data

End 

loop

wait

wait

 

The use of this model is subject to specific needs. For example, the Flash data block address, 

buffer size configuration and DMA configuration demo, please refer to 

project\at_start_f403a\double_buffer. 



AT32 Performance Optimization  

2021.12.10 16 Ver 2.0.0 

 Revision history 

Table 1. Document revision history  

Date  Version  Revision note 

2021.12.10 2.0.0 Updated contents and codes to V2. 

 



AT32 Performance Optimization  

2021.12.10 17 Ver 2.0.0 

 

 

 

 

 

 

 

 

 

 

 

IMPORTANT NOTICE – PLEASE READ CAREFULLY 

Purchasers are solely responsible for the selection and use of ARTERY’s products and services; ARTERY assumes no liability for 

purchasers’ selection or use of the products and the relevant services. 

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous 

representation in any forms. If any part of this document involves third party’s products or services, it does NOT imply that ARTERY 

authorizes the use of the third party’s products or services, or permits any of the intellectual property, or guarantees any uses of the third 

party’s products or services or intellectual property in any way. 

Except as provided in ARTERY’s terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty, 

relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a 

particular purpose (based on the corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other 

intellectual property right. 

ARTERY’s products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have 

specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements 

on product function safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other 

applications that may cause injuries, deaths or property damages. Since ARTERY products are not intended for the above-mentioned 

purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks 

caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with 

all statutory and regulatory requirements regarding these uses. 

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will 

immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and 

ARTERY disclaims any responsibility in any form. 

© 2021 ARTERY Technology – All Rights Reserved 

 


	1 Overview
	2 Bin file judgment
	2.1 Generate bin file
	2.2 View bin file size

	3 SRAM expansion
	3.1 SRAM demand analysis and trade-offs
	3.2 How to expand SRAM configuration
	3.3 Cautions on SRAM expansion

	4 Scatter loading
	4.1 View map relations
	4.2 How to implement scatter loading

	5 Increase maximum frequency
	5.1 Configuration method

	6 DMA read Flash
	7 Revision history

