
AT32 OTA using the USART

2021.12.31 1 Ver 2.0.0

AN0005

Application Note

AT32 OTA using the USART

Introduction
For most Flash-based systems, one of the most important requirement is the ability to update
firmware installed into the end products. The OTA (over-the-air) means that the user application
can write on some of User Flash area during runtime to update the firmware in the products through
the reserved communication interfaces after product release in a free manner.

This application note is written to provide general guidelines for creating OTA applications on the
AT32 microcontrollers.

The AT32 microcontrollers can run user-specific firmware to implement OTA function on the
embedded Flash. This function can use any communication interface available and supported by
products. This application note takes the USART using a custom protocol for demonstration.

Applicable products:

Part number All AT32 series

AT32 OTA using the USART

2021.12.31 2 Ver 2.0.0

Contents

 Overview ... 5

 How to execute OTA using AT32 USART ... 7

 Hardware resources ... 7

 Software resources .. 7

 How to use OTA demo .. 7

 How to set Template app OTA .. 8

 Address distribution .. 8

 Execution process .. 8

 Bootloader project settings ... 9

 App project settings .. 9

 How to set Dual app OTA ... 11

 Address distribution ... 11

 Execution process ... 11

 Bootloader project settings ... 12

 App project settings .. 12

 Bootloader/App and host communication protocol ... 14

 Revision history ... 16

AT32 OTA using the USART

2021.12.31 3 Ver 2.0.0

List of Tables

Table 1. Document revision history .. 16

AT32 OTA using the USART

2021.12.31 4 Ver 2.0.0

List of Figures

Figure 1. OTA code execution flow .. 5

Figure 2. IAP demo host PC .. 7

Figure 3. Flash address distribution .. 8

Figure 4. Program execution process .. 8

Figure 5. Bootloader project address 1 settings in Keil ... 9

Figure 6. Bootloader project address 2 settings in program ... 9

Figure 7. App project address 2 settings in Keil .. 9

Figure 8. App project vector table offset setting in program .. 10

Figure 9. Flash address distribution .. 11

Figure 10. Program execution process.. 11

Figure 11. Bootloader project address 1 settings in Keil ... 12

Figure 12. Bootloader project address 2 settings in program ... 12

Figure 13. App project address 2 settings in Keil .. 12

Figure 14. App project vector table offset setting in program .. 13

Figure 15. Host computer communication protocol ... 14

Figure 16. Slave computer communication protocol ... 15

AT32 OTA using the USART

2021.12.31 5 Ver 2.0.0

 Overview
In principle, the OTA (over-the-air) means that the user application can write on some of User Flash
area during runtime to update the firmware in the products through the reserved communication
interfaces after product release in a free manner.

Generally, to implement OTA function, it is necessary to write two project codes while designing the
firmware program, with the first one as the OTA Bootloader and the second as the project program
App serving as the actual functional code to execute the application and upgrade. Both project
codes are programmed in the User Flash simultaneously.

Figure 1. OTA code execution flow

In
cr

ea
si

n
g

Flash physical address

Reset interrupt vector

(Start address of interrupt vector table)

Non maskable interrupt vector

hardfault interrupt vector

Stack top address

Reset_Handler

NMIException

HardFaultException

int main(void)

OTA process

Reset interrupt vector

(New start address of interrupt vector

table)

Non maskable interrupt vector

hardfault interrupt vector

Reset_Handler

NMIException

HardFaultException

OTA program main function entry

Reset interrupt program entry

hardfault interrupt program entry

Reset_Handler(void)

Hardfault_Handler(void)

xxx interrupt program entry xxx_Handler(void)

New program main function entry int main(void)

0x08000000

0x08000004

0x08000004+N

0x08000004+N+M

0x08000004+N+M+n

In
cr

ea
si

n
g

In
cr

ea
si

n
g

Main

function

Circle Interrupt request

①

③

④

⑥

⑤②Jump

AT32 OTA using the USART

2021.12.31 6 Ver 2.0.0

During the execution as shown in the figure, after MCU is reset, it fetches the address of the reset
interrupt vector from the address 0x08000004, and jumps to the reset interrupt service program. At

the end of running, it jumps to the main function of bootloader, as shown in ①. After executing the

bootloader (the App code is the FLASH in grey background, and the start address of App program
reset interrupt vector is 0x08000004+N+M), it jumps to the reset vector table of App program,
fetches the address of the reset interrupt vector from App program and jumps to execute the reset

interrupt service program of App, and then jumps to the main function of App, as shown in ② and

③. The main function is an endless loop, and it should be noted that there are two interrupt vector

tables in different positions for the AT32 Flash.

During the execution of the main function, if CPU receives an interrupt request, the PC pointer is
still forced to jump to the interrupt vector table of the address 0x08000004, instead of the interrupt

vector table of the App program, as shown in ④. Then, the program will jump to the new interrupt

service program corresponding to the interrupt source according to the configured interrupt vector

table offset value, as shown in ⑤.

After the execution of interrupt service program, the program will return to the main function to

continue running, as shown in ⑥.

Based on the above mentioned analysis, it is clear to know that the two conditions must be required
for OTA application.

1) App program must start from the address at offset x following the Bootloader;

2) The interrupt vector table of App program must be moved by an offset of x.

AT32 OTA using the USART

2021.12.31 7 Ver 2.0.0

 How to execute OTA using AT32 USART

 Hardware resources

In this application note, the AT-START-AT32F403A demo board is used as the hardware conditions.
OTA demo source codes also include other AT32 series MCUs, and users only need to compile the
corresponding project and program it to the AT-START demo board.

1) LED2/LED3/LED4

2) USART1 (PA9/PA10)

3) AT-START demo board

 Software resources

1) tool_release

 IAP_Programmer.exe, PC host tool, to demonstrate OTA upgrade process

2) source_code

 Bootloader, Bootloader source program, LED2 blinks when working

 App_led3_toggle, App1 source program, LED3 blinks when working

 App_led4_toggle, App2 source program, LED4 blinks when working

Note: All projects are built around keil v5. If users want to use them in other compiling environments, please refer to

AT32F403A_407_Firmware_Library_V2.x.x\project\at_start_f403a\templates (such as IAR6/7/8, keil 4/5,

eclipse_gcc) for a simple change.

 How to use OTA demo

This application note mainly introduces two common OTA demos, i.e., template app and dual app.

1) Open the Bootloader project source program, select the target MCU, compile and download to

demo board;

2) Open the IAP_Programmer.exe;

3) Select the correct serial interface, APP download address and bin files, then click on

“Download”, as shown in the figure below;

4) Check the status of LED2/3/4: LED2 blinks-Bootloader working, LED3 blinks-App1 working,

LED4 blinks-App2 working.

Figure 2. IAP demo host PC

AT32 OTA using the USART

2021.12.31 8 Ver 2.0.0

 How to set Template app OTA

 Address distribution

Figure 3. Flash address distribution

Size flash block address

16K

496K

496K

0x08000000

0x08004000

0x08080000

0x08003800

Template area

App code

Bootloader

Flag area

Note: The last page of the Bootloader area is used to place the flag to prevent failures (such as power-off) during

upgrading. Please do not overwrite the address of this flag when modifying Bootloader.

 Execution process

The OTA contains Bootloader, App and Template, where the application is executed in App and
Template is only used as a temporary storage space for new App firmware data. The program
execution process is shown in the figure below.

Figure 4. Program execution process

MCU reset

Check whether FW
update flag set?

Copy data from app
template to app code

Jump to app

App init
Clear FW update flag

App run
Monitor update

cmd?

Receive app new FW
data, and copy to app

temlate address

Set updata flag
System reset

Y

N

Y

N

Bootloader App

AT32 OTA using the USART

2021.12.31 9 Ver 2.0.0

 Bootloader project settings

1) Keil settings

Figure 5. Bootloader project address 1 settings in Keil

2) Bootloader source program modification in ota.h file

Figure 6. Bootloader project address 2 settings in program

 App project settings

OTA demo provides two Apps for testing, both starting from address 2 (0x800 4000). LED3 blinks
for App1 and LED4 blinks for App2.

The App1 is used as an example to demonstrate how to set App project.

1) Keil project settings

Figure 7. App project address 2 settings in Keil

2) App1 source program settings

address 1 settings

address 2 settings

address 2 settings

AT32 OTA using the USART

2021.12.31 10 Ver 2.0.0

Figure 8. App project vector table offset setting in program

3) Compile and generate bin files

Call the fromelf.exe after compiling through User option, and generate .bin files according
to .axf file for OTA update.

Going through the above three steps, we can get an APP program in .bin format, and perform
update through Bootloader.

4) Enable debug App code function

If it is necessary to debug the App project separately when designing the App code, please
proceed as follows:

 Download Bootloader project

 Debug App project

Interrupt vector table offset address modification

AT32 OTA using the USART

2021.12.31 11 Ver 2.0.0

 How to set Dual app OTA

 Address distribution

Figure 9. Flash address distribution

Size flash block address

16K

496K

496K

0x08000000

0x08004000

0x08080000

0x08003000

App2 code

App1 code

Bootloader

App1/App2 Flag

Note: The last two pages of the Bootloader area are used to place the flag that is used to verify the correctness of

App. Please do not overwrite the address of this flag when modifying Bootloader.

 Execution process

The OTA contains Bootloader, App1 and App2, where the application is executed in App1 or App2.
The program execution process is shown in the figure below.

Figure 10. Program execution process

MCU reset

Check App2 flag
set?

YN

Bootloader

App init
Set App1 flag

Clear App2 flag

App run
Monitor update

cmd?

Receive app new FW
data, and copy to

App2 address

Jump to App2

Y

N

App1

App init
Set App2 flag

Clear App1 flag

App run
Monitor update

cmd?

Receive app new FW
data, and copy to

App1 address

Jump to App1

Y

N

App2

AT32 OTA using the USART

2021.12.31 12 Ver 2.0.0

 Bootloader project settings

1) Keil settings

Figure 11. Bootloader project address 1 settings in Keil

2) Bootloader source program modification in ota.h file

Figure 12. Bootloader project address 2 settings in program

 App project settings

OTA demo provides two Apps for testing, where the app_led3_toggle starting from 0x800 4000 and
app_led4_toggle starting from 0x8080000. LED3 blinks for App1 and LED4 blinks for App2.

The App1 is used as an example to demonstrate how to set App project.

1) Keil project settings

Figure 13. App project address 2 settings in Keil

address 1 settings

address settings

address 2 settings

AT32 OTA using the USART

2021.12.31 13 Ver 2.0.0

2) App1 source program settings

Figure 14. App project vector table offset setting in program

3) Compile and generate bin files

Call the fromelf.exe after compiling through User option, and generate .bin files according
to .axf file for OTA update.

Going through the above three steps, we can get an APP program in .bin format, and perform
update through Bootloader.

4) Enable debug App code function

If it is necessary to debug the App project separately when designing the App code, please
proceed as follows:

a) Download Bootloader project

b) Debug App project

Interrupt vector table offset address modification

AT32 OTA using the USART

2021.12.31 14 Ver 2.0.0

 Bootloader/App and host communication protocol
The program communicates with the host computer and receives firmware upgrade data. The
communication protocol between the host computer and embedded terminal is shown below.

1) Host computer communication protocol

Figure 15. Host computer communication protocol

AT32 OTA using the USART

2021.12.31 15 Ver 2.0.0

2) Embedded slave computer communication protocol

Figure 16. Slave computer communication protocol

Note: ACK: 0xCCDD

 NACK: 0xEEFF

 Data: 0x31+ Addr + data + checksum (1byte)

 Addr: 4bytes, high bit first

 Kbytes, download data, fill in 0xFF for less than 2K content

 Checksum: lower eight bits of the checksum of Addr of 1byte and 4bytes + 2Kbytes

AT32 OTA using the USART

2021.12.31 16 Ver 2.0.0

 Revision history

Table 1. Document revision history

Date Version Revision note

2021.12.31 2.0.0 Initial release

AT32 OTA using the USART

2021.12.31 17 Ver 2.0.0

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services; ARTERY assumes no liability for

purchasers’ selection or use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous

representation in any forms. If any part of this document involves third party’s products or services, it does NOT imply that ARTERY

authorizes the use of the third party’s products or services, or permits any of the intellectual property, or guarantees any uses of the third

party’s products or services or intellectual property in any way.

Except as provided in ARTERY’s terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty,

relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a

particular purpose (based on the corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other

intellectual property right.

ARTERY’s products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have

specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements

on product function safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other

applications that may cause injuries, deaths or property damages. Since ARTERY products are not intended for the above-mentioned

purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks

caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with

all statutory and regulatory requirements regarding these uses.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will

immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and

ARTERY disclaims any responsibility in any form.

© 2021 ARTERY Technology – All Rights Reserved

	1 Overview
	1.1 How to execute OTA using AT32 USART
	1.1.1 Hardware resources
	1.1.2 Software resources

	1.2 How to use OTA demo

	2 How to set Template app OTA
	2.1 Address distribution
	2.2 Execution process
	2.3 Bootloader project settings
	2.4 App project settings

	3 How to set Dual app OTA
	3.1 Address distribution
	3.2 Execution process
	3.3 Bootloader project settings
	3.4 App project settings

	4 Bootloader/App and host communication protocol
	5 Revision history

