
Jump to Boot Memory 

2021.12.9 1 Ver 2.0.0 

AN0008 

Application Note 

Jump to Boot Memory 

 

Introduction  
There is a boot memory in the memory map of AT32F4xx, which stores the bootloader. To execute 
the bootloader, the user must configure it through BOOT pin, generally pulling up BOOT0 and 
pulling down BOOT1. In actual application, the BOOT pin may not be connected, and it is not 
possible to enter bootloader by switching BOOT pin. Therefore, this application note is written to 
introduce how to directly jump from user code to bootloader. 

 
Note: The corresponding code in this application note is developed on the basis of V2.x.x BSP provided by 
Artery. For other versions of BSP, please pay attention to the differences in usage. 

 

Applicable products: 

Part number AT32Fxx 



Jump to Boot Memory 

2021.12.9 2 Ver 2.0.0 

Contents 

 Software implementation ...................................................................................... 5 

 Preconditions for jumping to bootloader ................................................................... 5 

 Implementation method 1 ......................................................................................... 5 

 Method 1 code implementation .................................................................................... 6 

 Implementation method 2 ......................................................................................... 8 

 Method 2 code implementation .................................................................................... 8 

 Test of jumping to bootloader through user code ........................................... 12 

 Revision history ................................................................................................... 13 



Jump to Boot Memory 

2021.12.9 3 Ver 2.0.0 

List of Tables 

Table 1. Document revision history .................................................................................................... 13 



Jump to Boot Memory 

2021.12.9 4 Ver 2.0.0 

List of Figures 

Figure 1. Software flowchart ................................................................................................................ 5 

Figure 2. Software flowchart ................................................................................................................ 8 

Figure 3. ISP Programmer device connection ................................................................................... 12 

Figure 4. ISP Programmer upgrade process ..................................................................................... 12 



Jump to Boot Memory 

2021.12.9 5 Ver 2.0.0 

 Software implementation 

 Preconditions for jumping to bootloader 

Before jumping from user code to boot memory to execute the bootloader, the user must complete 

the following operations: 

1) Disable all peripheral clocks; 

2) Disable PLL; 

3) Disable all interrupts;  

4) Clear all pending interrupt flags.  

Jumping to bootloader can be implemented by the following two methods: 

1) Method 1: Use code to complete the aforementioned four steps, and then jump to bootloader 

directly (the corresponding clocks, PLL and interrupts are cleared according to the peripherals 

enabled by customer’s code). 

2) Method 2: Automatically clear by performing a reset. After reset, jump to bootloader before 

initialization of user code in SystemInit.  

 Implementation method 1 

Use the AT-START evaluation board to design a user program “APPJumpToBootloaderMethod1”, 

which is mainly used to complete a LED operation. Then, detect a user button; when the button is 

pressed, jump to the bootloader directly (interrupts need to be cleared before jumping). If it is 

complex to clear all clocks and interrupts before jumping, the user can select method 2 to clear by 

performing a reset.  

Figure 1. Software flowchart 

Start

User code loop

Press user 
button

Clear clocks, PLL, 
interrupts

Jump to 
bootloader

Yes

No

 

 



Jump to Boot Memory 

2021.12.9 6 Ver 2.0.0 

 Method 1 code implementation  

The main function is mainly a LED and a detection button. Press the button if you need to enter the 

bootloader.  

 

 

The app_jump_to_bootloader function is used for jumping to the bootloader. 

 

 

int main(void) 

{ 

 uint32_t LedTimer = 0, LedTog = 0; 

 system_clock_config(); 

 at32_board_init(); 

 LedTog = system_core_clock/80; 

 while(1) 

 { 

  if(USER_BUTTON == at32_button_press()) 

  { 

   /*Clear Clock, PLL, Interrupt*/ 

   app_clear_sys_status (); 

   app_jump_to_bootloader (); 

  } 

  if(LedTimer == LedTog) 

  { 

   at32_led_toggle(LED4); 

   LedTimer = 0; 

  } 

  LedTimer ++; 

 } 

} 

void app_jump_to_bootloader(void) 

{ 

    uint32_t dwStkPtr, dwJumpAddr; 

    dwStkPtr = *(uint32_t *)BOOTLOADER_ADDRESS; 

    dwJumpAddr = *(uint32_t *)(BOOTLOADER_ADDRESS + sizeof(uint32_t)); 

     

    /* Before jumping to the bootloader, make sure that all peripheral clocks, PLL and 

interrupts are disabled, and all interrupt pending bits are cleared. */ 

    SET_MSP(dwStkPtr); 

    pfTarget = (void (*)(void))dwJumpAddr; 

    pfTarget(); 

} 



Jump to Boot Memory 

2021.12.9 7 Ver 2.0.0 

The app_clear_sys_status function is used to disable clocks, PLL, interrupts and clear pending interrupt flags.  

 

void app_clear_sys_status() 

{ 

 /*Close Peripherals Clock*/ 

 CRM->apb2rst = 0xFFFF; 

 CRM->apb2rst = 0; 

 CRM->apb1rst = 0xFFFF; 

 CRM->apb1rst = 0; 

 CRM->apb1en = 0; 

 CRM->apb2en = 0; 

 /*Close PLL*/ 

 /* Reset SW, AHBDIV, APB1DIV, APB2DIV, ADCDIV and CLKOUT_SEL bits */ 

 CRM->cfg_bit.sclksel = 0; 

 CRM->cfg_bit.ahbdiv = 0; 

 CRM->cfg_bit.apb1div = 0; 

 CRM->cfg_bit.apb2div = 0; 

 CRM->cfg_bit.adcdiv_l = 0; 

 CRM->cfg_bit.adcdiv_h = 0; 

 CRM->cfg_bit.clkout_sel = 0; 

 CRM->ctrl_bit.hexten = 0; 

 CRM->ctrl_bit.cfden = 0; 

 CRM->ctrl_bit.pllen = 0; 

 CRM->cfg_bit.pllrcs = 0; 

 CRM->cfg_bit.pllhextdiv = 0; 

 CRM->cfg_bit.pllmult_l = 0; 

 CRM->cfg_bit.pllmult_h = 0; 

 CRM->cfg_bit.usbdiv_l = 0; 

 CRM->cfg_bit.usbdiv_h = 0; 

 CRM->cfg_bit.pllrange = 0; 

 /* Disable all interrupts and clear pending bits  */ 

 CRM->clkint_bit.lickstblfc = 0; 

 CRM->clkint_bit.lextstblfc = 0; 

 CRM->clkint_bit.hickstblfc = 0; 

 CRM->clkint_bit.hextstblfc = 0; 

 CRM->clkint_bit.pllstblfc = 0; 

 CRM->clkint_bit.cfdfc = 0; 

 /*Close Systick*/ 

 SysTick->CTRL = 0; 

   

 /*Disable ALL interrupt && Pending Interrupt Flag*/ 

 /*Clear interrupts and pending interrupt flags according to peripherals enabled by users*/ 

 /* 

 user add code... 

 */ 

} 



Jump to Boot Memory 

2021.12.9 8 Ver 2.0.0 

 Implementation method 2 

Method 2 performs a reset to jump to the bootloader before initialization of user code in SystemInit. 

We use the AT-START evaluation board to design a user program 

“APPJumpToBootloaderMethod2”, which mainly completes a LED operation. Then, detect a user 

button; when the button is pressed, jump from the user program to the bootloader. At this point, 

write 0x5AA5 to the BPR_DATA1 register, and then generate a software reset. After software reset, 

judge whether the 0x5AA5 is written to BPR_DATA1 at the beginning of SystemInit; then, clear the 

BPR_DATA1. If BPR_DATA1=0x5AA5, jump to the bootloader (jump at the beginning of 

SystemInit, so as to prevent the user code from not matching the bootloader settings after 

initialization). 

 

Figure 2. Software flowchart 

Reset

Whether to jump at SystemInit  

BPR_DATA1==0x5AA5？

User code 

loop

Clear  

BPR_DATA1, 

jump to 

bootloader and 

execute

Detect the button and 
judge whether to jump 

to bootloader

Write 

BPR_DATA1=

=0x5AA5

No

Yes

No

Yes

Enter 

bootloader and 

upgrade

 

 

 Method 2 code implementation 

The main function is mainly a LED and a detection button. Press the button if you need to enter the 

bootloader.  



Jump to Boot Memory 

2021.12.9 9 Ver 2.0.0 

 

 

The bpr_write_flag function is mainly used to write a jump flag to BPR_DATA1 and perform 

software reset.  

 

int main(void) 

{ 

 uint32_t LedTimer = 0, LedTog = 0; 

 system_clock_config(); 

 at32_board_init(); 

 LedTog = system_core_clock/80; 

 while(1) 

 { 

  if(USER_BUTTON == at32_button_press()) 

  { 

   /* Save a BPR status flag, indicating that APP needs to jump to bootloader */ 

   BPR_Write_Flag(); 

  } 

  if ( LedTimer == LedTog) 

  { 

   at32_led_toggle(LED4);; 

   LedTimer = 0; 

  } 

  LedTimer ++; 

 } 

} 

void bpr_write_flag (void) 

{ 

 /* enable pwc and bpr clock */ 

 crm_periph_clock_enable(CRM_PWC_PERIPH_CLOCK, TRUE); 

 crm_periph_clock_enable(CRM_BPR_PERIPH_CLOCK, TRUE); 

 

 /* enable write access to bpr domain */ 

 pwc_battery_powered_domain_access(TRUE); 

 

 /* clear tamper pin event pending flag */ 

 bpr_flag_clear(BPR_TAMPER_EVENT_FLAG); 

  

 bpr_data_write(BPR_DATA1, BKP_JUMP_FLAG); 

  

 pwc_battery_powered_domain_access(FALSE); 

 

 /*System Reset*/ 

 NVIC_SystemReset(); 

} 



Jump to Boot Memory 

2021.12.9 10 Ver 2.0.0 

 

The bpr_check_flag function is mainly used to judge whether to jump to the bootloader after reset. 

Return 1: jump to bootloader; return 0: not to jump. 

 

 

The app_jump_to_bootloader is used for jumping to the bootloader. 

uint8_t bpr_check_flag (void) 

{ 

 uint8_t ret_val = 0; 

 /* enable pwc and bpr clock */ 

 crm_periph_clock_enable(CRM_PWC_PERIPH_CLOCK, TRUE); 

 crm_periph_clock_enable(CRM_BPR_PERIPH_CLOCK, TRUE); 

 

 /* enable write access to bpr domain */ 

 pwc_battery_powered_domain_access(TRUE); 

 

 /* clear tamper pin event pending flag */ 

 bpr_flag_clear(BPR_TAMPER_EVENT_FLAG); 

 

 if(bpr_data_read(BPR_DATA1) == BPR_JUMP_FLAG) 

 { 

  bpr_data_write(BPR_DATA1, 0x00); //write 00 to bkp 

  ret_val = 1;  

 } 

 

 pwc_battery_powered_domain_access(FALSE); 

 crm_periph_clock_enable(CRM_PWC_PERIPH_CLOCK, FALSE); 

 crm_periph_clock_enable(CRM_BPR_PERIPH_CLOCK, FALSE); 

 return ret_val; 

} 



Jump to Boot Memory 

2021.12.9 11 Ver 2.0.0 

 

Before initialization of user code in SystemInit, judge whether to jump to the bootloader. 

 

 

void app_jump_to_bootloader (void) 

{ 

    uint32_t dwStkPtr, dwJumpAddr; 

    dwStkPtr = *(uint32_t *)BOOTLOADER_ADDRESS; 

    dwJumpAddr = *(uint32_t *)(BOOTLOADER_ADDRESS + sizeof(uint32_t)); 

     

    /* Before jumping to the bootloader, make sure that all peripheral clocks, PLL and 

interrupts are disabled, and all interrupt pending bits are cleared. */ 

    SET_MSP(dwStkPtr); 

    pfTarget = (void (*)(void))dwJumpAddr; 

    pfTarget(); 

    

} 

void SystemInit (void) 

{ 

#if defined (__FPU_USED) && (__FPU_USED == 1U) 

  SCB->CPACR |= ((3U << 10U * 2U) |         /* set cp10 full access */ 

                 (3U << 11U * 2U)  );       /* set cp11 full access */ 

#endif 

  

 /*check if need to go into bootloader*/ 

 if(bpr_check_flag () == 1) 

 { 

  app_jump_to_bootloader (); 

 } 

 

  /* reset the crm clock configuration to the default reset state(for debug purpose) */ 

  /* set hicken bit */ 

  CRM->ctrl_bit.hicken = TRUE;… 

} 



Jump to Boot Memory 

2021.12.9 12 Ver 2.0.0 

 Test of jumping to bootloader through user code  

The AT-STAT-F403AV1.0 evaluation board is used for the test, and upgrade by the means of DFU 

(serial port upgrade process is the same).  

1. Download APPJumpToBootloaderMethod1 or APPJumpToBootloaderMethod2 to the AT-

START-F403A V1.0 evaluation board; 

2. LED3 blinks; 

3. Press PB2 USER button, and the LED3 will be OFF, indicating entering bootloader 

successfully; 

4. Plug and unplug the USB on the AT-STAT-F403A V1.0 board; 

5. Open Artery ISP Programmer, and you can find that an USB DFU device is connected.  

Figure 3. ISP Programmer device connection  

 

 

6. Upgrade the program according to ISP upgrade process.  

Figure 4. ISP Programmer upgrade process  

 



Jump to Boot Memory 

2021.12.9 13 Ver 2.0.0 

 Revision history 

Table 1. Document revision history 

Date  Version  Revision note 

2021.12.8 2.0.0 Initial release 

 



Jump to Boot Memory 

2021.12.9 14 Ver 2.0.0 

 

 

 

 

 

 

 

 

 

 

 

IMPORTANT NOTICE – PLEASE READ CAREFULLY 

Purchasers are solely responsible for the selection and use of ARTERY’s products and services; ARTERY assumes no liability for 

purchasers’ selection or use of the products and the relevant services. 

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous 

representation in any forms. If any part of this document involves third party’s products or services, it does NOT imply that ARTERY 

authorizes the use of the third party’s products or services, or permits any of the intellectual property, or guarantees any uses of the third 

party’s products or services or intellectual property in any way. 

Except as provided in ARTERY’s terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty, 

relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a 

particular purpose (based on the corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other 

intellectual property right. 

ARTERY’s products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have 

specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements 

on product function safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other 

applications that may cause injuries, deaths or property damages. Since ARTERY products are not intended for the above-mentioned 

purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks 

caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with 

all statutory and regulatory requirements regarding these uses. 

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will 

immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and 

ARTERY disclaims any responsibility in any form. 

© 2021 ARTERY Technology – All Rights Reserved 

 


	1 Software implementation
	1.1 Preconditions for jumping to bootloader
	1.2 Implementation method 1
	1.2.1 Method 1 code implementation

	1.3 Implementation method 2
	1.3.1 Method 2 code implementation


	2 Test of jumping to bootloader through user code
	3 Revision history

