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Introduction  
There is a boot memory in the memory map of AT32F4xx, which stores the bootloader. To execute 
the bootloader, the user must configure it through BOOT pin, generally pulling up BOOT0 and 
pulling down BOOT1. In actual application, the BOOT pin may not be connected, and it is not 
possible to enter bootloader by switching BOOT pin. Therefore, this application note is written to 
introduce how to directly jump from user code to bootloader. 

 
Note: The corresponding code in this application note is developed on the basis of V2.x.x BSP provided by 
Artery. For other versions of BSP, please pay attention to the differences in usage. 

 

Applicable products: 

Part number AT32Fxx 
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 Software implementation 

 Preconditions for jumping to bootloader 

Before jumping from user code to boot memory to execute the bootloader, the user must complete 

the following operations: 

1) Disable all peripheral clocks; 

2) Disable PLL; 

3) Disable all interrupts;  

4) Clear all pending interrupt flags.  

Jumping to bootloader can be implemented by the following two methods: 

1) Method 1: Use code to complete the aforementioned four steps, and then jump to bootloader 

directly (the corresponding clocks, PLL and interrupts are cleared according to the peripherals 

enabled by customer’s code). 

2) Method 2: Automatically clear by performing a reset. After reset, jump to bootloader before 

initialization of user code in SystemInit.  

 Implementation method 1 

Use the AT-START evaluation board to design a user program “APPJumpToBootloaderMethod1”, 

which is mainly used to complete a LED operation. Then, detect a user button; when the button is 

pressed, jump to the bootloader directly (interrupts need to be cleared before jumping). If it is 

complex to clear all clocks and interrupts before jumping, the user can select method 2 to clear by 

performing a reset.  

Figure 1. Software flowchart 
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 Method 1 code implementation  

The main function is mainly a LED and a detection button. Press the button if you need to enter the 

bootloader.  

 

 

The app_jump_to_bootloader function is used for jumping to the bootloader. 

 

 

int main(void) 

{ 

 uint32_t LedTimer = 0, LedTog = 0; 

 system_clock_config(); 

 at32_board_init(); 

 LedTog = system_core_clock/80; 

 while(1) 

 { 

  if(USER_BUTTON == at32_button_press()) 

  { 

   /*Clear Clock, PLL, Interrupt*/ 

   app_clear_sys_status (); 

   app_jump_to_bootloader (); 

  } 

  if(LedTimer == LedTog) 

  { 

   at32_led_toggle(LED4); 

   LedTimer = 0; 

  } 

  LedTimer ++; 

 } 

} 

void app_jump_to_bootloader(void) 

{ 

    uint32_t dwStkPtr, dwJumpAddr; 

    dwStkPtr = *(uint32_t *)BOOTLOADER_ADDRESS; 

    dwJumpAddr = *(uint32_t *)(BOOTLOADER_ADDRESS + sizeof(uint32_t)); 

     

    /* Before jumping to the bootloader, make sure that all peripheral clocks, PLL and 

interrupts are disabled, and all interrupt pending bits are cleared. */ 

    SET_MSP(dwStkPtr); 

    pfTarget = (void (*)(void))dwJumpAddr; 

    pfTarget(); 

} 
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The app_clear_sys_status function is used to disable clocks, PLL, interrupts and clear pending interrupt flags.  

 

void app_clear_sys_status() 

{ 

 /*Close Peripherals Clock*/ 

 CRM->apb2rst = 0xFFFF; 

 CRM->apb2rst = 0; 

 CRM->apb1rst = 0xFFFF; 

 CRM->apb1rst = 0; 

 CRM->apb1en = 0; 

 CRM->apb2en = 0; 

 /*Close PLL*/ 

 /* Reset SW, AHBDIV, APB1DIV, APB2DIV, ADCDIV and CLKOUT_SEL bits */ 

 CRM->cfg_bit.sclksel = 0; 

 CRM->cfg_bit.ahbdiv = 0; 

 CRM->cfg_bit.apb1div = 0; 

 CRM->cfg_bit.apb2div = 0; 

 CRM->cfg_bit.adcdiv_l = 0; 

 CRM->cfg_bit.adcdiv_h = 0; 

 CRM->cfg_bit.clkout_sel = 0; 

 CRM->ctrl_bit.hexten = 0; 

 CRM->ctrl_bit.cfden = 0; 

 CRM->ctrl_bit.pllen = 0; 

 CRM->cfg_bit.pllrcs = 0; 

 CRM->cfg_bit.pllhextdiv = 0; 

 CRM->cfg_bit.pllmult_l = 0; 

 CRM->cfg_bit.pllmult_h = 0; 

 CRM->cfg_bit.usbdiv_l = 0; 

 CRM->cfg_bit.usbdiv_h = 0; 

 CRM->cfg_bit.pllrange = 0; 

 /* Disable all interrupts and clear pending bits  */ 

 CRM->clkint_bit.lickstblfc = 0; 

 CRM->clkint_bit.lextstblfc = 0; 

 CRM->clkint_bit.hickstblfc = 0; 

 CRM->clkint_bit.hextstblfc = 0; 

 CRM->clkint_bit.pllstblfc = 0; 

 CRM->clkint_bit.cfdfc = 0; 

 /*Close Systick*/ 

 SysTick->CTRL = 0; 

   

 /*Disable ALL interrupt && Pending Interrupt Flag*/ 

 /*Clear interrupts and pending interrupt flags according to peripherals enabled by users*/ 

 /* 

 user add code... 

 */ 

} 
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 Implementation method 2 

Method 2 performs a reset to jump to the bootloader before initialization of user code in SystemInit. 

We use the AT-START evaluation board to design a user program 

“APPJumpToBootloaderMethod2”, which mainly completes a LED operation. Then, detect a user 

button; when the button is pressed, jump from the user program to the bootloader. At this point, 

write 0x5AA5 to the BPR_DATA1 register, and then generate a software reset. After software reset, 

judge whether the 0x5AA5 is written to BPR_DATA1 at the beginning of SystemInit; then, clear the 

BPR_DATA1. If BPR_DATA1=0x5AA5, jump to the bootloader (jump at the beginning of 

SystemInit, so as to prevent the user code from not matching the bootloader settings after 

initialization). 

 

Figure 2. Software flowchart 
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 Method 2 code implementation 

The main function is mainly a LED and a detection button. Press the button if you need to enter the 

bootloader.  
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The bpr_write_flag function is mainly used to write a jump flag to BPR_DATA1 and perform 

software reset.  

 

int main(void) 

{ 

 uint32_t LedTimer = 0, LedTog = 0; 

 system_clock_config(); 

 at32_board_init(); 

 LedTog = system_core_clock/80; 

 while(1) 

 { 

  if(USER_BUTTON == at32_button_press()) 

  { 

   /* Save a BPR status flag, indicating that APP needs to jump to bootloader */ 

   BPR_Write_Flag(); 

  } 

  if ( LedTimer == LedTog) 

  { 

   at32_led_toggle(LED4);; 

   LedTimer = 0; 

  } 

  LedTimer ++; 

 } 

} 

void bpr_write_flag (void) 

{ 

 /* enable pwc and bpr clock */ 

 crm_periph_clock_enable(CRM_PWC_PERIPH_CLOCK, TRUE); 

 crm_periph_clock_enable(CRM_BPR_PERIPH_CLOCK, TRUE); 

 

 /* enable write access to bpr domain */ 

 pwc_battery_powered_domain_access(TRUE); 

 

 /* clear tamper pin event pending flag */ 

 bpr_flag_clear(BPR_TAMPER_EVENT_FLAG); 

  

 bpr_data_write(BPR_DATA1, BKP_JUMP_FLAG); 

  

 pwc_battery_powered_domain_access(FALSE); 

 

 /*System Reset*/ 

 NVIC_SystemReset(); 

} 
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The bpr_check_flag function is mainly used to judge whether to jump to the bootloader after reset. 

Return 1: jump to bootloader; return 0: not to jump. 

 

 

The app_jump_to_bootloader is used for jumping to the bootloader. 

uint8_t bpr_check_flag (void) 

{ 

 uint8_t ret_val = 0; 

 /* enable pwc and bpr clock */ 

 crm_periph_clock_enable(CRM_PWC_PERIPH_CLOCK, TRUE); 

 crm_periph_clock_enable(CRM_BPR_PERIPH_CLOCK, TRUE); 

 

 /* enable write access to bpr domain */ 

 pwc_battery_powered_domain_access(TRUE); 

 

 /* clear tamper pin event pending flag */ 

 bpr_flag_clear(BPR_TAMPER_EVENT_FLAG); 

 

 if(bpr_data_read(BPR_DATA1) == BPR_JUMP_FLAG) 

 { 

  bpr_data_write(BPR_DATA1, 0x00); //write 00 to bkp 

  ret_val = 1;  

 } 

 

 pwc_battery_powered_domain_access(FALSE); 

 crm_periph_clock_enable(CRM_PWC_PERIPH_CLOCK, FALSE); 

 crm_periph_clock_enable(CRM_BPR_PERIPH_CLOCK, FALSE); 

 return ret_val; 

} 
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Before initialization of user code in SystemInit, judge whether to jump to the bootloader. 

 

 

void app_jump_to_bootloader (void) 

{ 

    uint32_t dwStkPtr, dwJumpAddr; 

    dwStkPtr = *(uint32_t *)BOOTLOADER_ADDRESS; 

    dwJumpAddr = *(uint32_t *)(BOOTLOADER_ADDRESS + sizeof(uint32_t)); 

     

    /* Before jumping to the bootloader, make sure that all peripheral clocks, PLL and 

interrupts are disabled, and all interrupt pending bits are cleared. */ 

    SET_MSP(dwStkPtr); 

    pfTarget = (void (*)(void))dwJumpAddr; 

    pfTarget(); 

    

} 

void SystemInit (void) 

{ 

#if defined (__FPU_USED) && (__FPU_USED == 1U) 

  SCB->CPACR |= ((3U << 10U * 2U) |         /* set cp10 full access */ 

                 (3U << 11U * 2U)  );       /* set cp11 full access */ 

#endif 

  

 /*check if need to go into bootloader*/ 

 if(bpr_check_flag () == 1) 

 { 

  app_jump_to_bootloader (); 

 } 

 

  /* reset the crm clock configuration to the default reset state(for debug purpose) */ 

  /* set hicken bit */ 

  CRM->ctrl_bit.hicken = TRUE;… 

} 
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 Test of jumping to bootloader through user code  

The AT-STAT-F403AV1.0 evaluation board is used for the test, and upgrade by the means of DFU 

(serial port upgrade process is the same).  

1. Download APPJumpToBootloaderMethod1 or APPJumpToBootloaderMethod2 to the AT-

START-F403A V1.0 evaluation board; 

2. LED3 blinks; 

3. Press PB2 USER button, and the LED3 will be OFF, indicating entering bootloader 

successfully; 

4. Plug and unplug the USB on the AT-STAT-F403A V1.0 board; 

5. Open Artery ISP Programmer, and you can find that an USB DFU device is connected.  

Figure 3. ISP Programmer device connection  

 

 

6. Upgrade the program according to ISP upgrade process.  

Figure 4. ISP Programmer upgrade process  
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