
DMA with Flexible Mapping

2021.12.21 1 Ver 2.0.0

AN0009

Application Note

DMA with Flexible Mapping

Introduction
This application note describes how to use DMA with flexible mapping function to make DMA
request configuration more free and flexible. This function is only available for some AT32 MCUs.

Applicable products:

Part number AT32Fxx

DMA with Flexible Mapping

2021.12.21 2 Ver 2.0.0

Contents

 Overview ... 5

 DMA configuration and usage .. 6

 Regular DMA configuration (fixed DMA mapping mode) ... 6

 How to use DMA with flexible mapping function ... 6

 Example code ... 9

 data_to_gpio_flexible.. 9

 Revision history .. 11

DMA with Flexible Mapping

2021.12.21 3 Ver 2.0.0

List of Tables

Table 1. DMA with fixed mapping request ... 6

Table 2. Summary of DMA flexible mapping requests of each channel for AT32F403A 6

Table 3. DMA flexible mapping library functions .. 8

Table 4. Document revision history .. 11

DMA with Flexible Mapping

2021.12.21 4 Ver 2.0.0

List of Figures

Figure 1. Example of DMA flexible mapping library functions ... 8

DMA with Flexible Mapping

2021.12.21 5 Ver 2.0.0

 Overview

The DMA with flexible mapping feature is available in some of Artery MCUs (AT32F413\ AT32F415\

AT32F403A\ AT32F407). Such function makes DMA channel configuration more flexible by

transferring the DMA request channel of a certain peripheral to any one of the 14 channels in DMA1

or DMA2 (for example, assign the DMA request of SPI1 RX data to the channel 7 of DMA1).

This application note describes how to use DMA with flexible mapping request to make DMA

transfers more flexible.

DMA with Flexible Mapping

2021.12.21 6 Ver 2.0.0

 DMA configuration and usage

 Regular DMA configuration (fixed DMA mapping mode)

Regular DMA configuration is as follows: the DMA channel of a peripheral is fixed and unchanged,

and it is ready to use as long as it is configured and enabled. This means that if the user wants to

enable the DMA of a certain peripheral, the channel cannot be changed. For example, to use the

DMA function of SPI1 RX, the user has to check the corresponding reference manual, as shown in

Table 1 below.

Table 1. DMA with fixed mapping request

Peripheral Channel 1 Channel 2 Channel 3 Channel 4 … Channel 7

ADC1 ADC1 …

SPI/I
2
S SPI1/I2S1_RX SPI1/I2S1_TX SPI2/I2S2_RX …

… … … … … … …

TMR4 TMR4_CH1 TMR4_CH2 …
TMR4_OVERFL

OW

From Table 1, we can see that the channel 2 of DMA1 should be enabled.

 How to use DMA with flexible mapping function

Flexible mapping request function means that the DMA channel of a peripheral is not fixed, and the

user can select any one of the 14 channels in DMA1 or DMA2.

To use this feature, the following procedures should be respected:

1) Enable flexible DMA mapping request

Write 1 to the 24th bit (DMA_FLEX_EN) of the DMA channel source register 1 (DMA_SRC_SEL1).

Write the relevant hardware ID to the register corresponding to the channel configuration.

The DMA request of each peripheral is assigned with a hardware ID, which needs to be written to

the channel source register. Such ID can be found in the Table 2 below. For example, AT32F403A is

as follows:

Table 2. Summary of DMA flexible mapping requests of each channel for AT32F403A

CHx_SRC
Request

source
CHx_SRC DMA source CHx_SRC

Request

source

CHx_SR

C

Request

source

0 No select 1 ADC1 2 reserved 3 ADC3

4 reserved 5 DAC1 6 DAC2 7 reserved

8 reserved 9 SPI1_RX 10 SPI1_TX 11 SPI2_RX

12 SPI2_TX 13 SPI3_RX 14 SPI3_TX 15 SPI4_RX

16 SPI4_TX 17 I2S2EXT_RX 18 I2S2EXT_TX 19

I2S3EXT_

RX

20 I2S3EXT_TX 21 reserved 22 reserved 23 reserved

24 reserved 25 USART1_RX 26 USART1_TX 27

USART2_R

X

DMA with Flexible Mapping

2021.12.21 7 Ver 2.0.0

CHx_SRC
Request

source
CHx_SRC DMA source CHx_SRC

Request

source

CHx_SR

C

Request

source

28 USART2_TX 29 USART3_RX 30 USART3_TX 31 UART4_RX

32 UART4_TX 33 UART5_RX 34 UART5_TX 35

USART6_R

X

36 USART6_TX 37 UART7_RX 38 UART7_TX 39 UART8_RX

40 UART8_TX 41 I2C1_RX 42 I2C1_TX 43 I2C2_RX

44 I2C2_TX 45 I2C3_RX 46 I2C3_TX 47 reserved

48 reserved 49 SDIO1 50 SDIO2 51 reserved

52 reserved 53 TMR1_TRIG 54 TMR1_HALL 55 TMR1_UP

56 TMR1_CH1 57 TMR1_CH2 58 TMR1_CH3 59

TMR1_CH

4

60 reserved 61 TMR2_TRIG 62 reserved 63 TMR2_UP

64 TMR2_CH1 65 TMR2_CH2 66 TMR2_CH3 67

TMR2_CH

4

68 reserved 69 TMR3_TRIG 70 reserved 71 TMR3_UP

72 TMR3_CH1 73 TMR3_CH2 74 TMR3_CH3 75

TMR3_CH

4

76 reserved 77 TMR4_TRIG 78 reserved 79 TMR4_UP

80 TMR4_CH1 81 TMR4_CH2 82 TMR4_CH3 83

TMR4_CH

4

84 reserved 85 TMR5_TRIG 86 reserved 87 TMR5_UP

88 TMR5_CH1 89 TMR5_CH2 90 TMR5_CH3 91

TMR5_CH

4

92 reserved 93 reserved 94 reserved 95 TMR6_UP

96 reserved 97 reserved 98 reserved 99 reserved

100 reserved 101 reserved 102 reserved 103 TMR7_UP

104 reserved 105 reserved 106 reserved 107 reserved

108 reserved 109 TMR8_TRIG 110 TMR8_HALL 111 TMR8_UP

112 TMR8_CH1 113 TMR8_CH2 114 TMR8_CH3 115

TMR8_CH

4

116 reserved 117 reserved 118 reserved 119 reserved

120 reserved 121 reserved 122 reserved 123 reserved

124 reserved 125 reserved 126 reserved 127 reserved

128 reserved 129 reserved 130 reserved 131 reserved

132 reserved 133 reserved 134 reserved 135 reserved

136 reserved 137 reserved 138 reserved 139 reserved

140 reserved 141 reserved 142 reserved 143 reserved

144 reserved 145 reserved 146 reserved 147 reserved

148 reserved 149 reserved 150 reserved 151 reserved

152 reserved 153 reserved 154 reserved 155 reserved

156 reserved 157 reserved 158 reserved 159 reserved

160 reserved 161 reserved 162 reserved 163 reserved

DMA with Flexible Mapping

2021.12.21 8 Ver 2.0.0

CHx_SRC
Request

source
CHx_SRC DMA source CHx_SRC

Request

source

CHx_SR

C

Request

source

164 reserved 165 reserved 166 reserved 167 reserved

168 reserved 169 reserved 170 reserved 171 reserved

172 reserved 173 reserved 174 reserved 175 reserved

The CHx_SRC setting value in the above table is the hardware ID, which should be written to the

corresponding channel bit in the channel source register. For example, to map the DMA request of

SPI1 RX to the DMA1 channel 7, the 0x09 should be written to the CH7_SRC[23:16] in the

DMA_SRC_SEL1 register. Other settings are the same as that of regular DMA. Going through the

above three steps, the flexible mapping function is ready to use.

Note: The mapping mode of DMA1/2 must be aligned when the DMA_FLEX_EN of DMA1/2 has to be set 1 or

0 at the same time. It is not feasible that DMA1 is configured as fixed mapping mode but DMA2 as flexible

mapping mode.

2) DMA flexible mapping library function

The corresponding library functions are available in the dma.h\dma.c of BSP, which can be used to

configure the DMA flexible mapping mode.

Library functions are described as follows:

Table 3. DMA flexible mapping library functions

void DMA_Flexible_Config(DMA_Type *DMAx,uint8_t Flex_Channelx,uint8_t Hardware_ID);

Parameters Description

DMAx DMA1 or DMA2

Flex_Channelx Channel selection (ch1 to ch7)

Hardware_ID Corresponding hardware ID

This function can be called to use as long as the regular DMA mapping function is set, as shown in

Figure 1 below:

Figure 1. Example of DMA flexible mapping library functions

In this example, the update interrupt of TIMER1 is configured as flexible DMA mapping request.

DMA with Flexible Mapping

2021.12.21 9 Ver 2.0.0

 Example code

Taking AT32F403A as an example, the codes= related to DMA flexible mapping function is

included in the BSP, available in the

AT32F403A_407_Firmware_Library_V2.x.x\project\at_start_f403a\examples\dma\data_to_gpio_fle

xible.

The subsequent section presents how to use this example.

 data_to_gpio_flexible

 data_to_gpio_flexible

This example shows how to transfer SRAM data to the output register of GPIO port through DMA

so as to control the GPIO port output. The TMER2 is configured to generate an overflow interrupt

and a DMA request, and the secondary DMA request is configured as flexible mapping mode.

Every time TIMER2 generate a DMA request, the DMA transfers a group of data from SRAM to

GPIO port.

DMA is configured as follows:

int main(void)

{

 system_clock_config();

 at32_board_init();

 /* Enable dma2/gpioc/tmr2 clocks*/

 crm_periph_clock_enable(CRM_DMA2_PERIPH_CLOCK, TRUE);

 crm_periph_clock_enable(CRM_GPIOC_PERIPH_CLOCK, TRUE);

 crm_periph_clock_enable(CRM_TMR2_PERIPH_CLOCK, TRUE);

 /* Initialize GPIO port */

 gpio_init_struct.gpio_pins = GPIO_PINS_ALL;

 gpio_init_struct.gpio_mode = GPIO_MODE_OUTPUT;

 gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL;

 gpio_init_struct.gpio_pull = GPIO_PULL_NONE;

 gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER;

 gpio_init(GPIOC, &gpio_init_struct);

 /* Initialize TMR2 */

 tmr_base_init(TMR2, 0xFF, 0);

 tmr_cnt_dir_set(TMR2, TMR_COUNT_UP);

 /* Enable TMR2 overflow DMA request */

 tmr_dma_request_enable(TMR2, TMR_OVERFLOW_DMA_REQUEST, TRUE);

DMA with Flexible Mapping

2021.12.21 10 Ver 2.0.0

 /* Configure DMA2 channel 1 for data transfer */

 dma_reset(DMA2_CHANNEL1);

 dma_init_struct.buffer_size = BUFFER_SIZE;

 dma_init_struct.direction = DMA_DIR_MEMORY_TO_PERIPHERAL;

 dma_init_struct.memory_base_addr = (uint32_t)src_buffer;

 dma_init_struct.memory_data_width = DMA_MEMORY_DATA_WIDTH_HALFWORD;

 dma_init_struct.memory_inc_enable = TRUE;

 dma_init_struct.peripheral_base_addr = (uint32_t)0x4001100C;

 dma_init_struct.peripheral_data_width = DMA_PERIPHERAL_DATA_WIDTH_HALFWORD;

 dma_init_struct.peripheral_inc_enable = FALSE;

 dma_init_struct.priority = DMA_PRIORITY_MEDIUM;

 dma_init_struct.loop_mode_enable = FALSE;

 dma_init(DMA2_CHANNEL1, &dma_init_struct);

 /* enable transfer full data intterrupt */

 dma_interrupt_enable(DMA2_CHANNEL1, DMA_FDT_INT, TRUE);

 /* dma2 channel1 interrupt nvic init */

 nvic_priority_group_config(NVIC_PRIORITY_GROUP_4);

 nvic_irq_enable(DMA2_Channel1_IRQn, 1, 0);

 /* Configure DMA flexible function */

 dma_flexible_config(DMA2, FLEX_CHANNEL1, DMA_FLEXIBLE_TMR2_OVERFLOW);

 /* Enable DMA channel */

 dma_channel_enable(DMA2_CHANNEL1, TRUE);

 /* Enable tmr2 */

 tmr_counter_enable(TMR2, TRUE);

 while(1)

 {

 }

}

The test results can be viewed by fetching the GPIO port data with a logic analyzer.

DMA with Flexible Mapping

2021.12.21 11 Ver 2.0.0

 Revision history

Table 4. Document revision history

Date Version Revision note

2021.12.21 2.0.0 Initial release

DMA with Flexible Mapping

2021.12.21 12 Ver 2.0.0

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services; ARTERY assumes no liability for

purchasers’ selection or use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous

representation in any forms. If any part of this document involves third party’s products or services, it does NOT imply that ARTERY

authorizes the use of the third party’s products or services, or permits any of the intellectual property, or guarantees any uses of the third

party’s products or services or intellectual property in any way.

Except as provided in ARTERY’s terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty,

relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a

particular purpose (based on the corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other

intellectual property right.

ARTERY’s products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have

specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements

on product function safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other

applications that may cause injuries, deaths or property damages. Since ARTERY products are not intended for the above-mentioned

purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks

caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with

all statutory and regulatory requirements regarding these uses.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will

immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and

ARTERY disclaims any responsibility in any form.

© 2021 ARTERY Technology – All Rights Reserved

	1 Overview
	2 DMA configuration and usage
	2.1 Regular DMA configuration (fixed DMA mapping mode)
	2.2 How to use DMA with flexible mapping function

	3 Example code
	3.1 data_to_gpio_flexible

	4 Revision history

