-3 Setup SLIB with Eclipse and GCC

ANO0027
Application Note

Setup SLIB with Eclipse and GCC

Introduction

This document describes how to debug AT32 MCU through Eclipse and how to configure security
library (sLib) with an application case.

AT32F403A is used as an example in this guideline. For more information on security library (sLib)
of AT32F403A, refer to the AT32F403A Security Library Application Note.

Applicable products:

Model AT32 series

2022.01.06 - - 1 - -

Rev 2.0.0

- Setup SLIB with Eclipse and GCC
Contents

1 OVEIVIBW ...ttt ettt ettt sttt et et e e e e e s e e e e e e e e e s e e e s eeeeeeeee e 5

2 Project_L0O eXample CASEcooviiiiiiiiiiiii et 6

2.1 How to generate Execute-only COUE7ccooiiiiiiiiiiiiiiiieee e 7

2.2 Security library address arrangement...........coovvuviiiiiiiiii e 8

2.3 Head file and symbol definition filecooiiiiiiiiiiiie e 11

2.4 Enable SECUNtY lIDFAryiiii i 12

3 Project_L1 USEIr CASE.........oiiiiiiiiiiiiiiiii et e e e s 13

K T B O3 (o7 (= U= g o] (0] = o SR 13

3.2 Add symbol definition file iN ProjecCtcoooeiiiiiiiiiiiii e 14

4 ReVISION hiStOrY ..o s 15

2022.01.06 - - 2 - = Rev 200

AR Setup SLIB with Eclipse and GCC
List of tables

Table 1. Document revision NISTOIY.........oouiiiiii e e 15

2022.01.06 3 Rev 2.0.0

LR Setup SLIB with Eclipse and GCC

List of figures

Figure 1. EClipSe WOTK dir€CIOIY......coo it st e e e 5
Figure 2. Configure € fil@Sot e e e e e 7
Figure 3. MiScCellaneous SELHNGSuiiiiiiiiiiiiiiie e e s e e e e e s s ssereeeeeeeeeennne 7
Figure 4. Main Flash mapping and RAM area diViSIONcooiiiiiiiiieeee i e e e ee e e e e 8
Figure 5. Configure code, data, ram SECHONcooiiiiiiiiiiie e 9
Figure 6. Set SCHPL flES ..ooiuiiiei e e e e e 9
Figure 7. Set “Other INKEr flags” ... it aee e 10
Figure 8. Set “BUild STEPS” ... oottt e e e areeaeaae 11
Figure 9. end-user-code.ld configuration..............cocviiiiii i 13
Figure 10. Set “Other ODJECES”cooiiiiiie e 14

2022.01.06 4 Rev 2.0.0

<[

B Setup SLIB with Eclipse and GCC

Overview

This document describes how to configure and debug security library (sLib) embedded in the
AT32F403A series through Eclipse, ARM-GCC compiler, GNU-ARM add-on, J-Link, AT-Link and
other resources. Project L0 and Project L1 example cases are provided for sLib solution providers
and end users, respectively.

For more information on sLib of the AT32F403A, refer to the document:
AN0040_AT32F403A_407_Security_Library Application_Note.

Environment requirements

The installation described in this document is done based on WINDOWS 7 x64 system, and the
evaluation board AT-START-F403A.

ANO0033_Eclipse_with_ GCC document: gives a description of how to install Eclipse debugging
environment and set up Eclipse project.

All software used in this document are packed in Setup_SLIB_with_Eclipse_and_GCC_V2.0.0.zip.
Just unzip this file, compile and run it.

The workspace of Eclipse, after unzipping above-mentioned file, can be found in
Setup_SLIB_ with_Eclipse_and_GCC_V2.0.0\utilities\slib_with_eclipse_and_gcc_demo.

It includes the following content:

Figure 1. Eclipse work directory

.metadata
project_|0
project_|1

.metadata: workspace environment configuration
project_l0: algorithm development example for solution providers

project_I1: application case for end users

2022.01.06

5 Rev 2.0.0

- Setup SLIB with Eclipse and GCC

Project LO example case

Project_LO example case includes the following operations:

2022.01.06

Compile low-pass filter function into Execute-only code

Place low-pass filter function code in Flash address 0x08004000 ~0x08004FFF(sector 8~9)
Place low-pass filter coefficient in Flash address 0x08005000 ~ 0x08005FFF(sector 10~11)
After successful verification, set sector 8~9 as instruction sLib, and sector 10~11 as data sLib,

which can be done by calling slib_enable() function in main.c, or by using Artery ICP
Programmer (ICP tool is recommended)

Generate head files and symbol definition files that are used to call low-pass filter function by
end-user applications.

6 Rev 2.0.0

AR

Setup SLIB with Eclipse and GCC

2.1

How to generate Execute-only code?

To generate Execute-only code, the following procedures are recommended:

1) Select C file group or a separate C file. The example below stores the desired C files in
FIR_Filter group. Click a file which you want to set as Execute-only from it, and right click and

select “Properties”

Figure 2. Configure C files

/& slib_with_eclipse_and_gce_demo - Un\projectyANUUZ/_Uebug A 32413 SLIB_witn_Eclipse_and_uLu\sety
File Edit Navigate Search Project Run Design Window Help
4. Debug [E] project_I1 Debug =
45 Debug (1 Project Explorer 52 = B [x .project 2
2%
455 project 10 Node
>) Includes 22 xml
> &= bsp 4 [g] projectDescription
s (= cmsis [name
> = Debug (€] comment
fuetik [€ projects
| [arm fir f32 A
> [& arm_fir_init New U
[fir_coefficie -
. [fir fiterc Open With y
> i= firmware .)
e Show in Local Terminal »
> = readme B Copy Cerl+C
: (= user Paste Cerl+V
[l fir_filter_symb 3¢ Delete Delete
[l keep_symta Remove from Context Ctrl+Alt+Shift+ Down
3 project 11 source)
Move...
Rename... F2
i Import.
iy Export..
Refresh F5
Index »
Resource Configurations »
Profiling Tools »
#7 Run C/C++ Code Analysis
Team »
Compare With »
Replace With »
Validate
Properties | Alt+Enter Vthi;time_’ -
1

2) Click C/C++ Build->Settings->GNU ARM Cross C Complier->Miscellaneous, and go to Other
compiler flags where you need to input two key words: -mpure-code, -mslow-flash-data, and

then click on Apply.

Figure 3. Miscellaneous settings

£ Properties for arm_fir_f32.c

type filter text
Resource

a4 C/C++ Build
Settings
Tool Chain Editor

4 C/C++ General
Language Mappings
Paths and Symbols
Prepracessor Include

Run/Debug Settings

A
@

Settings

[Exclude resource from build -

i Tool Settings ‘ [Container Settings I # Build Steps

4 B GNU ARM Cross C Compiler [] Generate assembler listing (-Wa,-adhins="$@.Ist")
(¥ Preprocessor
(2 Includes

(& Optimization

2 Warnings
(& Miscellaneous

[] Save temporary files (--save-temps Use with caution!)

[Cverbose ()

Other compiler ﬂagl -mpure-code -mslow-flash-data

[Restora Defaults| l Apply] i

[Apply and Close]

Cancel I

2022.01.06

7 Rev 2.0.0

- Setup SLIB with Eclipse and GCC

2.2 Security library address arrangement

Figure 4 presents the main Flash mapping and RAM area division used in Project_LO example
case.

The RAM area division is designed to prevent the same RAM area from being used by both sLib
code and end user code.

Figure 4. Main Flash mapping and RAM area division

0x20000000 0x08000000
SLIB used RAM
0x200000FF
0x20000100 Vector table

User code

0x08003FFF

rRAM
S 0x08004000

SLIB_INSTRUCTION
0x08004FFF

0x08005000
SLIB_DATA

0x08005FFF

0x08006000
User code

OXO80FFFFF

The filter function code needs to be placed in the main Flash address 0x08004000 ~ 0x08004FFF
(sector 8 ~ 9).

The filter coefficient needs to be placed in the main Flash address 0x08005000 ~ 0x08005FFF
(sector 10 ~ 11).

The 256-byte RAM address ranging from 0x20000000 to 0x200000FF is to be reserved for sLib
code.

To make this happen, follow the procedures below:

1) Create an Id file according to the “AT32F403AxC_FLASH.Id” linker descriptor”. For example,
there is “slib.ld” to be created underproject_I0\eclipse_gcc\ld.

2) In“slib.ld”, define the main Flash memory and RAM area

/% Specifv the memorv areas %/

MEMORY

FLASH 1 (rx) : ORIGIN = 0x08000000, LENGTH = 16K

SLIB_INST (x) : ORIGIN = 0x08004000, LENGTH = 4K

SLIB DATA (r) : ORIGIN = 0x08005000, LENGTH = 4K

FLASH 2 (rx) : ORIGIN = 0x08006000, LENGTH = 1000K

SLIB_RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 0x100 /% used for SLIB code #/
l}i’;—\M (xrw) : ORIGIN = 0x20000100, LENGTH = 96K - 0x100

2022.01.06 8 Rev 2.0.0

AR Setup SLIB with Eclipse and GCC

3) Place algorithm code into the .slib_inst section, and low-pass filter coefficient into the .slib_data
section, and global variables for algorithm into the .slib_ram section, as shown below.

Figure 5. Configure code, data, ram section

/% Define output sections #%/

SECTIONS

I

(O .
'# The startup code goes first into FLASH #/
.isr_vector :

] . = ALIGN(4) :
1 KEEP (%(. isr_vector)) /% Startup code */
| . = ALIGN(4) :

} »FLASH 1

.slib_inst :

= ALIGN(4):
#fir_filter.o (. text .text¥);
#arm_fir £32.o0 (. text . text¥):
] #arm fir init f32.0 (. text .text#);
I . = ALIGN(4) ;
i} » SLIB_INST

.jslib_data : /% SLIB_DATA arae */
= ALIGN{4):

#fir_coefficient.o (.rodata .rodata%);
. = ALIGN(4) :
} » SLIB_DATA

| . slib_ram : /% Used for SLIB #/

= ALIGN{4) :
#fir_filter.o (. data .data%);
#fir filter.o (. bss .bss¥);
= ALIGN(4) :
} » SLIB_RAM

4) Go to Project->Properties->C/C++ Build->Setting->GNU ARM Cross C Linker->General, and
add “slib.ld” in it.

Figure 6. Set script files

& Properties for project 10 o [B [
type filter text Settings (=1 T v
> Resource ot , ; N
Builders (% Target Processor Script files (-T) €& 8

(# Optimization
(5 Warnings
(3 Debugging
4 15 GNU ARM Cross Assembler
5 Preprocessor
2 Includes
& Warnings
(2 Miscellaneaus
4 5 GNU ARM Cross C Compiler
5 Preprocessor
(£ Includes

4 C/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Editor
> C/C++ General
Linux Tools Path
> MCU
Project Natures

*${workspace_project_locationsyld/slib.d”

,

Project References L
e (% Optimization
Refactoring History
Run/Debug Settings
> Task Repository
Task Tags
> Validation
WikiText

(5 Warnings

(2 Miscellaneous
4 1% GNU ARM Cross C Linker m
(% General
8 Libraries
(2 Miscellaneous
4 1) GNU ARM Crass Create Flash Image
| (& General
4 % GNILI ARM Cross Brint Gize s

2022.01.06 9 Rev 2.0.0

AR Setup SLIB with Eclipse and GCC

5) The libm.a (GCC mathematical function) is used in this example case.

Go to Properties->GNU ARM Cross C Linker->Miscellaneous, and then input “-
specs=rdimon.specs”in the Other linker flags dialogue box. This is to avoid linker error.

Figure 7. Set “Other linker flags”

& Properties for project [0 - =~
fyee fitter taxi Settings T

> Resource L
Builders
4 C/C+ Build Configuration: [Debug [Active 1 -] [Manage Configurations.

Build Variables
Environment.

Logging & Tool Settings |) Taolchains | Ml Devices | O Container Settings | #* Build Steps | Build Artifact | (& Binary Parsers | @ Error Parsers|
Sailivs 2 Target P inker flags (linker [opti

3 " g
Tool Chain Editor arget Frocessor Linker flags (-Xlinker [option]) 8

. C/C++ General % Optimization
Linux Tools Path % Warnings

ey (5 Debugging

485 GNU ARM Cross Assembler
(2 Preprocessor
(2 Includes
(B Warnings
(2 Miscellaneous

485 GNU ARM Cross C Compiler

Project Natures
Project References
Refactoring History
Run/Debug Settings

 Task Repository

Task Tags .
N Preprocessor Other objects 5
. Validation =
WikiText & Includes 3

(& Optimization
(& Warnings
(& Miscellaneous
4 8 GNU ARM Cross C Linker
(% General

4 & GNU ARM Cross Create Flash Image
(5 General

4§ GNU ARM Cross Print Size [Cross reference (-Klinker --cref)
(% General [Print link map (Klinker —print-map)

Generstemap *${BuildArtifactfileBaseName).map’

Use newlib-nano (--specs=nano.specs)
[] Use float with nano printf (-u_printf float)
[7] Use float with nano scanf (-u _scanf float)

Do not use syscalls (~specs=nasys.specs)
v

Other linker flags --specs=rdimon.specs |

For more information about the syntax of id file, refer to related GNU linker documents.

2022.01.06 10 Rev 2.0.0

19[-% Setup SLIB with Eclipse and GCC

2.3 Head file and symbol definition file

In Project_L1 user application case, the header file and symbol definition file is used to call FIR low-

pass filter function.
In this example, the header file refers to the “fir_filter.h” file in the main.c, while the symbol definition

file defines the actual address of low-pass filter function.

To generate a symbol definition file, the following procedures are recommended:
1) Go to Project->Properties->C/C++ Build->Setting, and then click on Build Steps

Figure 8. Set “Build Steps”

figuration: [Debug | Active | + | [Manage Configurations...

In “Post-build steps”, input the command below:
arm-none-eabi-objcopy.exe --keep-symbols="..\keep_sym.txt" -S --remove-section=.ARM.attributes
--extract-symbol "${BuildArtifactFileBaseName}.elf" "..\fir_filter_symbol.sym"

2) Where, “fir_filter_symbol.sym” indicates symbol definition file that needs to be generated.
“keep_sym.txt” is located in the project_I0\eclipse_gcc and used to select the desired function
symbol, as shown below:

FIE lowpass filter

3) After compiling the whole project, there is a symbol definition file called “fir_filter_symbol.sym”
under project_[0\eclipse_gcc.

2022.01.06 1" Rev 2.0.0

19[-% Setup SLIB with Eclipse and GCC

2.4 Enable security library

The following two options can be used to enable security library.

1) Artery ICP Programmer (recommended)
The details on enabling security library through ICP Programmer can be found in the AT32F403A

Security Library Application Note.

2) Use slib_enable() function described in main.c
After successful test of low-pass filter function, executing the slib_enable() function once will enable
security library. To run this function, just need to enable #define USE_SLIB_FUNCTION in the

main.c.

2022.01.06 12 Rev 2.0.0

<[

B Setup SLIB with Eclipse and GCC

3

Note:

3.1

2022.01.06

Project_L1 user case

Project_L1 example case needs to use the FIR low-pass filter function which is already debugged
and programmed into main Flash memory of the AT32F403A and is sLib-enabled (security library)
in Project_LO example case.

The end user can follow Project_L1 example case to do the following operations, based on the
header file, symbol definition file and main Flash mapping provided in Project_LO.

® Create a project

® Import header file and symbol definition file provided in Project_LO to this project
® Call FIR low-pass filter function

® Develop and debug user applications

Project_L1 must use the same tool chain and compiler edition as that of Project_LO in order to avoid
incompatibility between editions which may make it impossible to use Project L0 code

Create user project

As mentioned before, the security library in Project_LO occupies partial Flash pages, and thus the
code address in Project_L1 must be allocated according to the main Flash memory mapping
provided in Project_LO. The sector 8~11 of Project L0 is owned by security library, so that such
area has to be isolated using id file, in order to avoid other code being put into it.

To make this happen:

Divide the main Flash space into two blocks, FLASH 1 and FLASH_2, by using end_user_code.ld

file under project_I1\eclipse_gcc\ld. The area left between FLASH_1 and FLASH_2 is the so-called
security library area.

Besides, the RAM area ranging from 0x20000000 to 0x200000FF must also be reserved, as shown
below:

Figure 9. end-user-code.ld configuration

/% Specify the memorv areas %/

MEMORY

FLASH_1 (rx) : ORIGIN = 0x08000000, LENGTH = 16K

SLIB_INST (x) : ORIGIN = 0x08004000, LENGTH = 4K

.SLIB DATA (r) : ORIGIN = 0x08005000, LENGTH = 4K

"FLASH_2 (rx) : ORIGIN = 0x08006000, LENGTH = 1000K

:SLIB_RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 0x100 /# used for SLIB code #*/
|l§.~\M (xrw) : ORIGIN = 0x20000100, LENGTH = 96K - 0x100

1

Define output sections *
SECTIONS

‘ /% The startup code goes first into FLASH #/
. isr_vector :
© . = ALIGN(M);
| KEEP (% (. isr_vector)) /% Startup code %/
I . = ALIGN(4);
} »FLASH 1
.slib_inst (NOLOAD) :

A #(.slib_code)
} > SLIB_INST

.slib_data (NOLOAD) :

| KEEP(*(.slib_data))
} > SLIB DATA

.slib_ram :

" KEEP (% (. s1ib_ram))
} > SLIB RAM

13 Rev 2.0.0

AR Setup SLIB with Eclipse and GCC

3.2

2022.01.06

In figure 9, the SLIB_CODE and SLIB_DATA have been programmed with code in advance by
solution providers, and thus they are marked as NOLOAD to avoid being downloaded again while
downloading Project L1 code into main Flash memory.

Add symbol definition file in project

The fir_filter_symbol.sym (symbol definition file) generated in Project_LO must be added into

Project_L1 so that it can be compiled and linked to SLIB code, as configured below:

1) Add fir_filter_symbol.sym into FIR_Filter group

2) Go to Project->Properties->C/C++ Build->Settings->Tool Setting->GNU ARM Cross C
Linker->Miscellaneous, and add the symbol definition file into Other objects. In this way, this
file can be found and linked while compiling project.

Figure 10. Set “Other objects”

£ Properties for project 1 OfC X

41 GNU ARM Cross Print Size
(2 General

[ClUse float with
[¥]Do not u
[Verbose ()
ther |

flags

Restore Defaults Apply 3
@ i

14 Rev 2.0.0

LR Setup SLIB with Eclipse and GCC

4 Revision history

Table 1. Document revision history

Date Revision Changes

2022.01.06 2.0.0 Initial release

2022.01.06 15 Rev 2.0.0

- Setup SLIB with Eclipse and GCC

IMPORTANT NOTICE — PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services; ARTERY assumes no liability for
purchasers’ selection or use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous
representation in any forms. If any part of this document involves third party’s products or services, it does NOT imply that ARTERY
authorizes the use of the third party’s products or services, or permits any of the intellectual property, or guarantees any uses of the third

party’s products or services or intellectual property in any way.

Except as provided in ARTERY'’s terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty,
relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a
particular purpose (based on the corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other

intellectual property right.

ARTERY’s products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have
specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements
on product function safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other
applications that may cause injuries, deaths or property damages. Since ARTERY products are not intended for the above-mentioned
purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks
caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with

all statutory and regulatory requirements regarding these uses.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will
immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and
ARTERY disclaims any responsibility in any form.

© 2022 Artery Technology -All rights reserved

2022.01.06 16 Rev 2.0.0

	1 Overview
	2 Project_L0 example case
	2.1 How to generate Execute-only code?
	2.2 Security library address arrangement
	2.3 Head file and symbol definition file
	2.4 Enable security library

	3 Project_L1 user case
	3.1 Create user project
	3.2 Add symbol definition file in project

	4 Revision history

