
Setup SLIB with Eclipse and GCC

2022.01.06 1 Rev 2.0.0

AN0027

Application Note

Setup SLIB with Eclipse and GCC

 Introduction
This document describes how to debug AT32 MCU through Eclipse and how to configure security
library (sLib) with an application case.

AT32F403A is used as an example in this guideline. For more information on security library (sLib)
of AT32F403A, refer to the AT32F403A Security Library Application Note.

Applicable products:

Model AT32 series

Setup SLIB with Eclipse and GCC

2022.01.06 2 Rev 2.0.0

Contents

1 Overview ... 5

2 Project_L0 example case .. 6

2.1 How to generate Execute-only code? ... 7

2.2 Security library address arrangement ... 8

2.3 Head file and symbol definition file .. 11

2.4 Enable security library .. 12

3 Project_L1 user case ... 13

3.1 Create user project ... 13

3.2 Add symbol definition file in project .. 14

4 Revision history ... 15

Setup SLIB with Eclipse and GCC

2022.01.06 3 Rev 2.0.0

List of tables

Table 1. Document revision history .. 15

Setup SLIB with Eclipse and GCC

2022.01.06 4 Rev 2.0.0

List of figures

Figure 1. Eclipse work directory... 5

Figure 2. Configure C files ... 7

Figure 3. Miscellaneous settings ... 7

Figure 4. Main Flash mapping and RAM area division ... 8

Figure 5. Configure code, data, ram section ... 9

Figure 6. Set script files ... 9

Figure 7. Set “Other linker flags” ... 10

Figure 8. Set “Build Steps” ... 11

Figure 9. end-user-code.ld configuration ... 13

Figure 10. Set “Other objects” ... 14

Setup SLIB with Eclipse and GCC

2022.01.06 5 Rev 2.0.0

1 Overview

This document describes how to configure and debug security library (sLib) embedded in the

AT32F403A series through Eclipse, ARM-GCC compiler, GNU-ARM add-on, J-Link, AT-Link and

other resources. Project_L0 and Project_L1 example cases are provided for sLib solution providers

and end users, respectively.

For more information on sLib of the AT32F403A, refer to the document:

AN0040_AT32F403A_407_Security_Library_Application_Note.

Environment requirements

The installation described in this document is done based on WINDOWS 7 x64 system, and the

evaluation board AT-START-F403A.

AN0033_Eclipse_with_GCC document: gives a description of how to install Eclipse debugging

environment and set up Eclipse project.

All software used in this document are packed in Setup_SLIB_with_Eclipse_and_GCC_V2.0.0.zip.

Just unzip this file, compile and run it.

The workspace of Eclipse, after unzipping above-mentioned file, can be found in

Setup_SLIB_with_Eclipse_and_GCC_V2.0.0\utilities\slib_with_eclipse_and_gcc_demo.

It includes the following content:

Figure 1. Eclipse work directory

.metadata: workspace environment configuration

project_l0: algorithm development example for solution providers

project_l1: application case for end users

Setup SLIB with Eclipse and GCC

2022.01.06 6 Rev 2.0.0

2 Project_L0 example case

Project_L0 example case includes the following operations:

 Compile low-pass filter function into Execute-only code

 Place low-pass filter function code in Flash address 0x08004000 ~0x08004FFF(sector 8~9)

 Place low-pass filter coefficient in Flash address 0x08005000 ~ 0x08005FFF(sector 10~11)

 After successful verification, set sector 8~9 as instruction sLib, and sector 10~11 as data sLib,

which can be done by calling slib_enable() function in main.c, or by using Artery ICP

Programmer (ICP tool is recommended)

 Generate head files and symbol definition files that are used to call low-pass filter function by

end-user applications.

Setup SLIB with Eclipse and GCC

2022.01.06 7 Rev 2.0.0

2.1 How to generate Execute-only code?

To generate Execute-only code, the following procedures are recommended:

1) Select C file group or a separate C file. The example below stores the desired C files in

FIR_Filter group. Click a file which you want to set as Execute-only from it, and right click and

select “Properties”

Figure 2. Configure C files

2) Click C/C++ Build->Settings->GNU ARM Cross C Complier->Miscellaneous, and go to Other

compiler flags where you need to input two key words: -mpure-code, -mslow-flash-data, and

then click on Apply.

Figure 3. Miscellaneous settings

Setup SLIB with Eclipse and GCC

2022.01.06 8 Rev 2.0.0

2.2 Security library address arrangement

Figure 4 presents the main Flash mapping and RAM area division used in Project_L0 example

case.

The RAM area division is designed to prevent the same RAM area from being used by both sLib

code and end user code.

Figure 4. Main Flash mapping and RAM area division

Vector table
User code

SLIB_INSTRUCTION

SLIB_DATA

0x08000000

0x08003FFF
0x08004000

0x08004FFF
0x08005000

0x08005FFF
0x08006000

User code

0x080FFFFF

User RAM

SLIB used RAM
0x20000000

0x200000FF
0x20000100

The filter function code needs to be placed in the main Flash address 0x08004000 ~ 0x08004FFF

(sector 8 ~ 9).

The filter coefficient needs to be placed in the main Flash address 0x08005000 ~ 0x08005FFF

(sector 10 ~ 11).

The 256-byte RAM address ranging from 0x20000000 to 0x200000FF is to be reserved for sLib

code.

To make this happen, follow the procedures below:

1) Create an Id file according to the “AT32F403AxC_FLASH.ld” linker descriptor”. For example,

there is “slib.ld” to be created underproject_l0\eclipse_gcc\ld.

2) In “slib.ld”, define the main Flash memory and RAM area

Setup SLIB with Eclipse and GCC

2022.01.06 9 Rev 2.0.0

3) Place algorithm code into the .slib_inst section, and low-pass filter coefficient into the .slib_data

section, and global variables for algorithm into the .slib_ram section, as shown below.

Figure 5. Configure code, data, ram section

4) Go to Project->Properties->C/C++ Build->Setting->GNU ARM Cross C Linker->General, and

add “slib.ld” in it.

Figure 6. Set script files

Setup SLIB with Eclipse and GCC

2022.01.06 10 Rev 2.0.0

5) The libm.a (GCC mathematical function) is used in this example case.

Go to Properties->GNU ARM Cross C Linker->Miscellaneous, and then input “--

specs=rdimon.specs” in the Other linker flags dialogue box. This is to avoid linker error.

Figure 7. Set “Other linker flags”

For more information about the syntax of id file, refer to related GNU linker documents.

Setup SLIB with Eclipse and GCC

2022.01.06 11 Rev 2.0.0

2.3 Head file and symbol definition file

In Project_L1 user application case, the header file and symbol definition file is used to call FIR low-

pass filter function.

In this example, the header file refers to the “fir_filter.h” file in the main.c, while the symbol definition

file defines the actual address of low-pass filter function.

To generate a symbol definition file, the following procedures are recommended:

1) Go to Project->Properties->C/C++ Build->Setting, and then click on Build Steps

Figure 8. Set “Build Steps”

In “Post-build steps”, input the command below:

arm-none-eabi-objcopy.exe --keep-symbols="..\keep_sym.txt" -S --remove-section=.ARM.attributes

--extract-symbol "${BuildArtifactFileBaseName}.elf" "..\fir_filter_symbol.sym"

2) Where, “fir_filter_symbol.sym” indicates symbol definition file that needs to be generated.

“keep_sym.txt” is located in the project_l0\eclipse_gcc and used to select the desired function

symbol, as shown below:

3) After compiling the whole project, there is a symbol definition file called “fir_filter_symbol.sym”

under project_l0\eclipse_gcc.

Setup SLIB with Eclipse and GCC

2022.01.06 12 Rev 2.0.0

2.4 Enable security library

The following two options can be used to enable security library.

1) Artery ICP Programmer (recommended)

The details on enabling security library through ICP Programmer can be found in the AT32F403A

Security Library Application Note.

2) Use slib_enable() function described in main.c

After successful test of low-pass filter function, executing the slib_enable() function once will enable

security library. To run this function, just need to enable #define USE_SLIB_FUNCTION in the

main.c.

Setup SLIB with Eclipse and GCC

2022.01.06 13 Rev 2.0.0

3 Project_L1 user case

Project_L1 example case needs to use the FIR low-pass filter function which is already debugged

and programmed into main Flash memory of the AT32F403A and is sLib-enabled (security library)

in Project_L0 example case.

The end user can follow Project_L1 example case to do the following operations, based on the

header file, symbol definition file and main Flash mapping provided in Project_L0.

 Create a project

 Import header file and symbol definition file provided in Project_L0 to this project

 Call FIR low-pass filter function

 Develop and debug user applications

Note: Project_L1 must use the same tool chain and compiler edition as that of Project_L0 in order to avoid

incompatibility between editions which may make it impossible to use Project_L0 code

3.1 Create user project

As mentioned before, the security library in Project_L0 occupies partial Flash pages, and thus the

code address in Project_L1 must be allocated according to the main Flash memory mapping

provided in Project_L0. The sector 8~11 of Project_L0 is owned by security library, so that such

area has to be isolated using id file, in order to avoid other code being put into it.

To make this happen:

Divide the main Flash space into two blocks, FLASH_1 and FLASH_2, by using end_user_code.ld

file under project_l1\eclipse_gcc\ld. The area left between FLASH_1 and FLASH_2 is the so-called

security library area.

Besides, the RAM area ranging from 0x20000000 to 0x200000FF must also be reserved, as shown

below:

Figure 9. end-user-code.ld configuration

Setup SLIB with Eclipse and GCC

2022.01.06 14 Rev 2.0.0

In figure 9, the SLIB_CODE and SLIB_DATA have been programmed with code in advance by

solution providers, and thus they are marked as NOLOAD to avoid being downloaded again while

downloading Project_L1 code into main Flash memory.

3.2 Add symbol definition file in project

The fir_filter_symbol.sym (symbol definition file) generated in Project_L0 must be added into

Project_L1 so that it can be compiled and linked to SLIB code, as configured below:

1) Add fir_filter_symbol.sym into FIR_Filter group

2) Go to Project->Properties->C/C++ Build->Settings->Tool Setting->GNU ARM Cross C

Linker->Miscellaneous, and add the symbol definition file into Other objects. In this way, this

file can be found and linked while compiling project.

Figure 10. Set “Other objects”

Setup SLIB with Eclipse and GCC

2022.01.06 15 Rev 2.0.0

4 Revision history

Table 1. Document revision history

Date Revision Changes

2022.01.06 2.0.0 Initial release

Setup SLIB with Eclipse and GCC

2022.01.06 16 Rev 2.0.0

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services; ARTERY assumes no liability for

purchasers’ selection or use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous

representation in any forms. If any part of this document involves third party’s products or services, it does NOT imply that ARTERY

authorizes the use of the third party’s products or services, or permits any of the intellectual property, or guarantees any uses of the third

party’s products or services or intellectual property in any way.

Except as provided in ARTERY’s terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty,

relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a

particular purpose (based on the corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other

intellectual property right.

ARTERY’s products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have

specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements

on product function safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other

applications that may cause injuries, deaths or property damages. Since ARTERY products are not intended for the above-mentioned

purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks

caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with

all statutory and regulatory requirements regarding these uses.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will

immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and

ARTERY disclaims any responsibility in any form.

© 2022 Artery Technology -All rights reserved

	1 Overview
	2 Project_L0 example case
	2.1 How to generate Execute-only code?
	2.2 Security library address arrangement
	2.3 Head file and symbol definition file
	2.4 Enable security library

	3 Project_L1 user case
	3.1 Create user project
	3.2 Add symbol definition file in project

	4 Revision history

