?r ? AT32F403A/407 Security Library Application Note

ANO0040
Application Note

AT32F403A/407 Security Library Application Note

Introduction

This application note mainly introduces the security library (sLib) application principle of
AT32F403A/407 MCUs, operation methods and example projects.

Applicable products:

AT32F403A

Part number

AT32F407

2022.4.13 1 Ver 2.0.2

<[

? AT32F403A/407 Security Library Application Note

Contents
OV EBIVIBW ..ttt ettt ettt ettt ettt ettt e s e e e s e e e e e e e e e e e e e s e e e e enenenenen e 6
2 Application PrinCiPlES ..o 7
2.1 Application prinCiple Of SLIDccoooiiiiiii 7
2.2 How to enable SLID ProteCHIONccovviiiiiiiiee e 9
2.3 How to disable SLIbD ProtECHON........uuuiuiiiiiiiiiiiiiii e 9
2.4 Compile and execute program in SLID ... 10
2.4.1 Setting interrupt vector table as security library not allowedccccceeeviiieeennee. 11
2.4.2 Correlation between sLib area and user COdE area...........ccceevveeerieeiiieeiiee e, 11
3 Example applications of SLib ... 14
3.1 Example application reqUIreMEeNtS............uueeeiiiiiiiiiiiiiieiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 14
311 Hardware reqUIFEIMENTS.cooi ittt e e s nbe e e e e aneeee s 14
3.1.2 SOfWAre reqUIFEIMENTSeiiiiiiiie ettt e e s ebe e e e e anneee s 14
N O Y= = PP PPPPPPPPPPPPP 14
3.3 SLIB protected code: FIR 10W-pass filter.............uuuiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee 15
3.4 Project_LO: example for SOIUtion Providers..............uueeeeeiiiiiiiiiieiieiiiiiiiiieeeeeeeeeeeeeeee 16
3.4.1 Generate eXeCUte-0NlY COUEccoiuiiiiiiiiie e e 16
3.4.2 Compile security library address. ... 18
3.4.3 Enable SLID ProteCON........oii ettt et 22
3.4.4 ProjeCt_LO @XECULION PrOCESScciiiuiiieeiitiiieeeetieeeeeiteeeessiteeeesseaeeessnteeeessnbeeeeesneeeens 23
3.4.5 Generate header file and symbol definition file...........cccooioiiiiii e, 25
3.5 Project_L1: example fOr €N USEISouviiiiiiiiiiiiiiiiiieieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 26
3.5.1 Create user appliCation PrOJECLcoiiieiiiiiie et 27
3.5.2 Add symbol definition file t0 Projectcooeeiiiiiiiiieie e 27
3.5.3 Call functions in SLIB-ProteCted ar€accouvueieeiiiiiiiee e 29
3.5.4 ProjeCt_L1 @XECULION PrOCESSccciiutitieiiiieeeaiiiee e ettt ettt e raee e et e e e abe e e e e aaeeee s 29
3.5.5 SLIB protection in debug MOGE..........ooiiiiiiiiiiiie e 29
4 Integrate codes and downloadooouiuiiiiiiiiiii s 33
4.1 Program Codes SEPArately...........uuuuuiiiiieeiiieiiiiiiie e e e e e e et e e e e e e e eenar e e e e e aeeaaaan 33
4.2 Integrate and Program COUESuuuuiiiiieeiiieeiiiiiieeeeeeeeeeettna e e e eaeeeesrsnnaaeeeeaeeennnnns 36
5 REVISION NISTOIY oo 39

2022.4.13

’I?F ? AT32F403A/407 Security Library Application Note

List of tables

Table 1. Flash Size 0f AT32F40BASA0Tueeieiieee ettt 8
Table 2. DOCUMENT FeVISION NISTOIY.......cciiieiiiiieie et e e e e s e e e e e e s e sasnneeeeeeeeeeennnnes 39
7 | 5 7] | 1 | I |

2022.4.13 3 Ver 2.0.2

<[

5

AT32F403A/407 Security Library Application Note

List of figures

2022.4.13

Figure 1. Mapping of main Flash memory featured with SLID ... 8
Figure 2. Literal poOl @XamPIE (L)uuuiiiiieeiiiiiiiiieeee e e e et e e e e e e st e e e e e e s e sasaaee e e e e e e e s ennnnrnneeeeeaees 10
Figure 3. Literal pOO0l @XamMPIE (2) ...c.co i ueeiiiiiiiie ettt ettt e e e et e e e s anaaeeaeaan 11
Figure 4. Function in sLib area calling the function in user code area...........cccceeiieeiiiieiciniieeeene 12
Figure 5. Example of user-defined fuNCHON.............ooiiiiii e 13
Figure 6. Example appliCatiOn PrOCESS.ouuiiaiiiuiiieeaiiiee e eitte e e ettt ee et e e ettt e e e sanbee e e s anbeeeeeanreeaeaan 15
Figure 7. EXample appliCAtiONuuiiiiiieii i e e e e e e e e e e e e e e e e e e nnnannneeeeaees 15
Figure 8. FIR IOW-PASS flltEIccoiieieiiiie et e e e e e e e e e e eneeeeean 15
Figure 9. Enter Option interface iN Keil...........c.uuuiiiiiee e e e 17
Figure 10. Select Execute-only Code iN Keilcuuveiiiiiiiiiiiiiee e e e 17
Figure 11. Enter Option interface iN ARooi et saeeeeeeae 17
Figure 12. Set C/C++ OPtONS N TARuiiiiiiiiiee ettt s e e s st e e e st e e e s snbee e e e sneeeeeaan 18
Figure 13. Main Flash memory mapping and RAM Partitioncoooiuieeeiiiiiees e 19
Figure 14. Set Linker option iN Keil.........coooiiiiii et s e e 19
Figure 15. Modify SCAEr iIN KBlcooiiiiiie ettt e s st e e s snneeeeeaan 20
Figure 16. Modify SLIB RAM address iN KEILccuciiiiiiiiiiiee et e e e e naeeeeea e 20
Figure 17. Modify SLIB constant addresSs iN KEIL.........ccccuuiiiiiieei e 20
Figure 18. SLIB address definition iN QTcuuiiiiiie e e e e 21
Figure 19. Address assignment iNQCT fille............uuiiiiei i 21
Figure 20. Modify IP-Code RAM N ICF fil@.......oiiiiieee e 21
Figure 21. Modify SLIB constant address iN TAR.........cuiiiiiiiiee et 22
Figure 22. Configure ICP PrOgramMIEr........c..cuieiiiieeeiiiieeeeeiieeeeeeeieeeesstaeeesssaeeesssnseeeessseeeesannseeeeanns 22
Figure 23. Set parameters in DOWNIOAd FOMMcooiiiiiiiiiiiee et e e seeeee e 23
Figure 24. Project_LO @XECULION PIrOCESScuuuriiiiieeeeieiiiireeeeeeeessssistaeeeeaeeesassnsssassseaaeesasnnsssneeeaaees 24
Figure 25. Set MiSC CONIOIS IN KEIlcoiiiiiiiiieieee e e e e ee e e e 25
Figure 26. Contents of modified fir_filter symbol.tXt..........c.ooerreiiiii e, 25
Figure 27. Set BUild ACHIONS IN TARooii e e e e e e e e e e e aaeeeeeaeeees 26
Figure 28. Edit steering_file.IXt CONENTiiiiiii e 26
Figure 29. Modified SCAEr fil.......coouiiiiie e 27
Figure 30. MOIfied QCf fil@........ei et 27
Figure 31. Add symbol definition file in Keil...........oooeiiiiii e 28
Figure 32. Modify symbol definition file type to “Object file” ... 28
Figure 33. Add symbol definition file iN TARoeriii e e 28
Figure 34. Project L1 @XECULION PIrOCESSccuuurriiiieeeeiiiiiireeeeeeeessssssteeeeeaeessassasnsaseeeeeeesasnnsssneseaaees 29

T 4 - T Ver202

5

AT32F403A/407 Security Library Application Note

2022.4.13

Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.

Enter Show Disassembly at AQUIESScccuviiiiiiiei e 30
Set SHOW CO0E At AAIESScoiiiiiieiiiee e e e e e e eaes 30
VIBW COOEBS ...ttt ettt e et e e e s e et e s eabe et e e e nb et e e e anbr e e e e enbeeeeeannees 30
VIEW COUES IN IMEIMOIY .oeiiiiiiiiieeee ettt e e e e e e e e e e e e e st e e e e e e s ennsnreeeeeeeeeesnnsenneees 31
View SLIB_DATA start SECLOr in MEMIOIYc.coouiiiiiiiiiiie et 31
SLIB WIILE TEST ...ttt et ettt e e e bt e e e s bbe e e s snbe e e e e anseeeaeanreeaeanns 31
Write protection error INTEITUPToiuuieii ettt et e e e e e s e e e eneeeaeeaes 32
SAVE SLIB COUBS ...ttt et e ettt e e s abe e e e e aabe e e e s anneeaeanns 33
Generate bin file Of SLIB COURoiiiiiiiii it 34
Online programming t0 MCU iN TCP........ccoii it e e e e 34
Offline programming t0 MCU Via AT-LINKc..uuiiiiieeeeiciiiieeee e e e e e e s esnneeeeee e 35
End users program codes t0 MCU.........ooicuiiiiiiiee e e e e e e e e e s e e e e e e e e nnnes 36
Set OffliNE PrOJECT. ... e e s enreeeeenns 37
Y Yo [0 1 o] o] [T o A 1= ORI 38

5 Ver 2.0.2

?r ? AT32F403A/407 Security Library Application Note

1 Overview

As more and more MCU applications require complex algorithms and middleware solutions, it has
become an important issue that how to protect IP-Codes (such as core algorithms) developed by
software solution providers.

The AT32F403A/407 series MCUs are designed with a security library (sLib) to protect important
IP-Codes against being changed or read by the end user’s program.

This application note details the sLib application principle and operation methods of
AT32F403A/407 MCUs.

2022.4.13 6 Ver 2.0.2

_|— — AT32F403A/407 Security Library Application Note

2022.4.13

Application principles

Application principle of sLib

Security library is a defined area protected by a code in the main memory, so that solution
providers can program core algorithm into this area, and the rest of the area can be used for
secondary development by end customers.

Security library includes instruction security library (SLIB_INSTRUCTION) and data security
library (SLIB_DATA), users can select part of or the whole security library for instruction
storage, but using the whole security library for storing data is not supported.

Program codes in the instruction security library (SLIB_INSTRUCTION) can only be fetched
(can only be executed) by MCU through I-Code bus and cannot be read through D-Code
(including ISP/ICP debug mode and programs that boot from internal RAM). When accessing
the SLIB_INSTRUCTION in the manner of reading data, values are all read OxFF.

Data in the data security library (SLIB_DATA) can only be read through D-Code bus and
cannot be programmed.

The program code and data in security library cannot be erased unless the correct code is
keyed in. If a wrong code is keyed in, in an attempt of writing or erasing the security library, a
warning message will be issued by EPPERR=1 in the FLASH_STS register.

The program code and data in security library are not erased when the end users perform a
mass erase on the main Flash memory.

Users can write the previously defined password in the SLIB_PWD_CLR register to disable
security library protection. When the security library protection is disabled, the chip will perform
a mass erase on the main Flash memory (including the contents of security library). Therefore,
even if the code defined by the software solution provider is leaked, the program code will not
be leaked.

The mapping of main Flash memory featured with sLib is shown in Figure 1. The program codes in

security library can be easily called and executed by end users, but cannot be read directly.

7 Ver 2.0.2

?r _Q AT32F403A/407 Security Library Application Note

Figure 1. Mapping of main Flash memory featured with sLib

User Code_Start@

USER CODE

User_Code End@

SLIB_Start@

SLIB_INSTRUCTION

SLIB_DATA

SLIB_End@

The range of sLib is set by sector, and the size of each sector is subject to the specific MCUs.
Table 1 lists the main Flash size, sector size and configurable range of AT32F403A/407 series

MCuUs.
Table 1. Flash size of AT32F403A/407

Part number Internal Flash size(Byte) Sector size (Byte) Configurable range
AT32F403AxC Sector 2 ~ 63

256K 2K
AT32F407xC (0x08001000 ~ 0X0801FFFF)
AT32F403AXE Sector 2 ~ 63

512K 2K
AT32F407xE (0x08001000 ~ 0x0801FFFF)
AT32F403AxG Sector 2 ~ 63

1024K 2K
AT32F407xG (0x08001000 ~ 0x0801FFFF)

2022.4.13 8 Ver 2.0.2

_|— — AT32F403A/407 Security Library Application Note

2.2 How to enable sLib protection

By default, security library setting register is unreadable and write protected. To enable write
access to this register, security library should be unlocked first. Write 0OxA35F6D24 to the
SLIB_UNLOCK register, and check the SLIB_ULKF bit in the SLIB_MISC_STS register to verify if it
is unlocked successfully. Then, set values can be written into the security library setting register.

The steps to enable security library are as follows:

® Check the OBF bit in the FLASH_STS register to confirm that there is no other ongoing
programming operation;

® \Write 0xA35F6D24 to the SLIB_UNLOCK register to unlock security library;

® Check the SLIB_ULKF bitin the SLIB_MISC_STS register to verify that it is unlocked
successfully;

® Set the sectors to be protected in the SLIB_SET_RANGE register, including the address of
instruction and data areas;

® Wait until the OBF bit becomes “07;

® Set a security library password in the SLIB_SET_PWD register;

® Wait until the OBF bit becomes “0”;

® Program the code to be saved in security library;

® Perform system reset, and then reload security library setting word;

® Read the SLIB_STSO0/STSL1 register to verify the security library settings.
Notes:

® |[tis allowed to set security library in the main Flash memory only, and refer to Table 1 for the
configurable range;

® The security library code must be programmed by sectors, with its start address aligned with
the main memory address;

® The interrupt vector table is in data type and usually placed in the first sector (sector0) of the

main Flash memory, which should not be configured as security library;

® Codes to be protected by the security library should not be placed in the first 4 KB of main
Flash memory.

For details of security library setting register, please refer to AT32F403A/407 Series Reference
Manual.

The program to start security library can be found in the slib_enable() function in main.c file of
project_I0. In addition, users can use Artery ICP/ISP tools for configuration.

2.3 How to disable sLib protection

The security library protection can be disabled by writing the previously defined password to the
SLIB_PWD_CLR register. While disabling security library protection, MCU will perform mass erase
operation to the main Flash memory (including the contents of security library).

2022.4.13 9 Ver 2.0.2

<[

? AT32F403A/407 Security Library Application Note

2.4

2022.4.13

The steps to disable main Flash security library are as follows:

® Check the OBF bit in the FLASH_STS register to ensure that there is no other ongoing
programming operation;

® \Write the previously defined password to the SLIB_PWD_CLR register;

® Perform system reset, and then reload security library setting word;

® Read the SLIB_STSO register to check the security library settings.

Compile and execute program in sLib

As aforementioned, program codes in the instruction security library (SLIB_INSTRUCTION) can be
fetched by MCU via I-Code bus but cannot be read via D-Code bus in the manner of reading data,

which means that program codes in SLIB_INSTRUCTION cannot read the data saved in the same
SLIB_INSTRUCTION. For example, literal pool, branch table or constant compiled from C program
code in the SLIB_INSTRUCTION cannot be read via D-Code bus.

Only instructions rather than data can be placed in the instruction security library. Therefore, when
compiling program codes to be placed in the instruction security library, the user must configure the
compiler to generate execute-only codes to avoid generating the above mentioned data.

Figure 2 and Figure 3 show the examples of literal pool and branch table.

The “switch()” is a jump instruction in C program, and the “sclk_source” variable is used to read the
CRM_CFG register. As shown in Figure 2, the compiled assembly code “LDR R7, [PC, #288]"
obtains the address of CRM_CFG register in a PC (program counter) indirect addressing manner,
and the address of CRM_CFG register is saved as a constant in the adjacent instruction area
(within the instruction security library); therefore, the data is read when the switch() instruction is
executed. An error will occur during execution if there is such program code in the instruction
security library.

The example program in Section 3 introduces how to configure compiler settings to avoid error.

Figure 2. Literal pool example (1)

O0x08004798 2600 MCVS r&, #0x00
T79: zclk source = (crm sclk type)CRM->cfg bit.sclksts;
80:
S0x08004792 4F39 LDR r7, [pc, #228] ; @0x0BO04880
0x0D800479C 687F LDR r7, [x7,$0x04]

Ox0800479E F3CT70381 UBFX r3,r7,%2,%2
81: switch(sclk source)

Mo
[T

case CRM SCLE_HICK:

_] main.c] startup_at32403a_407.s] at32f403a 407_clock.c || system_at32f403a 407.c]| at32f403a_ 407_cm.c | at32f403a_407_gpio.c

78 '* get sclk source */
b 79 || sclk source = (crm sclk type)CRM->cfg bit. sclksts:
80
81 ;Witch (sclk_source)
828 {
83 case CRM_SCLE_HICK:
84 if (((CRM->misc3_bit.hick to_sclk) != RESET) && ((CRM->miscl_bit. hickdis
85 svstem _core_clock = HICK_VALUE * 6;
86 else
87 svstem core_clock = HICK VALUE;
38 break;

10 Ver 2.0.2

<[

? AT32F403A/407 Security Library Application Note

241

242

2022.4.13

Figure 3. Literal pool example (2)

137: system core_clock = system core clock »»> div_wvalue;
Ox0200486E 4F0& LDR r7, [pc, $#24] ; BOxOBO048EB8
0x08004870 &83F LDR r7, [x7,#0x00]
0x08004872 40F7 LSR5 r7,r7,r6
O0x08004874 FEDFCO10 LDR.W rlz2, [pc, #¥16] ; E0Ox0B004888
Ox08004878 FECCTO00 STR r7, [rl2,#0x00]

138: 1}

EbﬂxGBGD&BTC BDFO ECP {rd4-r7,pc}
0x0800487E Q000 DCW 0x0000
Ox08004880 1000 DCW 0x1000
Ox08004882 4002 DCW 0x4002

Setting interrupt vector table as security library not allowed

The interrupt vector table contains entry point address of each interrupt handler, which is read by
MCU via D-Code bus. Generally, the interrupt vector table is located in the first sector (sectorO,
starting address: 0x08000000). Therefore, the following rules must be followed when setting the
instruction security library:

® Do not configure the first sector of the main Flash as security library;

® Program codes to be protected by security library should not be placed in the first sector.

Correlation between sLib area and user code area

Program code (IP-code) protected by sLib area can call functions from the function library located
in user code area (outside the sLib area). In this case, these function addresses are contained in
the IP-Code, allowing PC (program counter) to jump to these functions when IP-Code is executed.
Once the sLib area is enabled, function address cannot be changed. At this point, addresses of
functions in the user code area must be fixed; otherwise, PC will jump to a wrong address and not
work properly. Therefore, when configuring the sLib area, all functions related to IP-Code should be
compiled into the sLib area. Figure 4 gives an example of the protected Function_A() being called
to Function_B() in the user code area.

11 Ver 2.0.2

<[

? AT32F403A/407 Security Library Application Note

2022.4.13

Figure 4. Function in sLib area calling the function in user code area

User_Code_Start@

Function B fixed@ ' Function_B()

{
...... ; User code area
{
User_Code_End@

SLIB_Start@
Function_A()
{
Function_B(); SLIB area
}

SLIB_End@

In addition, the standard function library of C programming language is commonly used, such as
memset() and memcpy() functions. If both IP-Code and user area code call such functions, the
above mentioned error may occur. The two solutions are recommended:

1) Compile into the sLib area (refer to Keil or IAR documents for details about implementation).

2) Do not use the standard function library of C programming language in IP-Code. If it is
necessary to use in IP-Code, functions to be used must be renamed. Figure 5 shows an
example of writing the my_memset() function to replace the original memset() in IP-Code.

12 Ver 2.0.2

ll?l_ ? AT32F403A/407 Security Library Application Note

Figure 5. Example of user-defined function

void* my_memset (void *s, int c, size t n);

void arm_fir_init f32(
arm_fir instance_ £32 * 5,
uintl6é_t numTaps,
float32 t * pCoeffs,
float3Z2 t * pState,
. uint32 t blockSize)
(=
/% Assign filter taps */
S—>numTaps = numTaps;

/% Assign coefficient pointer */
S->pCoeffs = pCoeffs;

7= Clcar state DULLer ang Tie SiZe Of STale DUffer 15 (DIOCKSIZe - numiaps — 1) */
my_memset (pState, 0, (numTaps + (blockSize — 1u)) * sizeof(float32_t)) |

/% Assign state pointer %/
S—>pState = pState;

void* my_memset (void *s, int ¢, size t n)
=h
while (n>0)

#((char¥)s + n— -1) = (char)e:

return (s):

2022.4.13 13 Ver 2.0.2

-

b

AT32F403A/407 Security Library Application Note

3.1
3.11

3.1.2

3.2

2022.4.13

Example applications of sLib

This section introduces example applications of sLib and how to complete these applications step
by step.

The AT32F407 and AT32F403A series MCUs have the same SLIB feature. In this application note,
the AT32F403A series is used for demonstration.

Example application requirements

Hardware requirements

® AT-START-F403A demo board with AT32F403AVGT7 chip

® AT-Link emulator for debugging example applications

Software requirements

® Keil® pvision IDE (pvision V5.18.0.0 is used in this example) or IAR Embedded workbench
IDE (IAR V8.22.2 is used in this example)

® Artery ICP/ISP programming tools for enabling or disabling sLib

Overview

This application note provides two example projects to demonstrate that software developers
develop IP-Code for end-user applications.

® Project_LO: Solution provider develops algorithm and compiles to sLib
® Project_L1: Apply algorithm for end users

The algorithm completed in Project_LO will be pre-downloaded and pre-burned to AT32F403A chip
and configured as sLib protected. In addition, the following settings are available for the end-user
applications.

® Main Flash memory mapping, showing the area occupied by sLib and the area where users
can develop programs

® Header file that contains algorithm function definitions, allowing end users to call relevant
functions;

® Symbol definition file, which contains the actual address of each IP-Code function, so that
functions can be called properly by the end-user application.

14 Ver 2.0.2

’I?F ? AT32F403A/407 Security Library Application Note

Figure 6. Example application process

Project_LO
Programs SLIB protected code

}

Project_L1
Programs End User Code
Using SLIB protected functions

}

End user application

Software solution providers can refer to the Project_LO to develop algorithm code and refer to
Project_L1 for end-user application.

Figure 7. Example application

Provide AT32F403A Provide pre burned

chip . . IP-CODE AT32F403A chip
K — Solution- Provider — End-User
- Project_lO Project_I1

3.3 SLIB protected code: FIR low-pass filter

This example uses FIR low-pass filter algorithm provided by CMSIS-DSP library as the sLib
protected IP-Code. For details about FIR low-pass filter algorithm, refer to CMSIS-DSP relevant
documents. This application note mainly introduces how to configure sLib to protect this algorithm
and how it is called by the end-user program code.

The low-pass filter input signal in this example is a combination of two sine waves with frequencies
of 1 KHz and 15 KHz, while the low-pass filter cut-off frequency is about 6 KHz. A 15 KHz signal is
filtered through the low-pass filter and outputs 1 KHz sine wave. Figure 8 shows the FIR low-pass
filter functions.

Figure 8. FIR low-pass filter

Input signal Output signal
1 1
- U U SN IO SN 0E
= H H é
= : | | =
[[7ES E— ! - ‘ FIR Low Pass Filter ‘ 04 : ; : ;
0z : | U VT SN S
ok s Jh_ Dﬁ]!k i
i i 1 15 2 a5 il i i 5 7 35
=10 w1’
7 | 5 7] | 1 | I |

2022.4.13 15 Ver 2.0.2

-

b

AT32F403A/407 Security Library Application Note

3.4

3.41

2022.4.13

CMSIS DSP library functions and files to be used are:

® arm_fir_init_f32()

It is used for initialization of filter function, which is included in “arm_fir_init_f32.c” file.
® arm_fir_f32()

It is the main part of filter algorithm, which is included in “arm_fir_f32.c” file.

® FIR_lowpass_filter()

It is a FIR low-pass filter global function written by using the above two functions for the end user to
call, which is included in “fir_filter.c” file.

® fir_coefficient.c

This C file contains coefficients (read-only constants) used by FIR filter functions, and these
coefficients are placed in data security library in the example.

In this example, FPU and DSP instructions in the MCU are used for signal processing and floating
point arithmetic to realize accurate calculation and correct output signal.

Project_LO: example for solution providers

The following projects are completed in this example:
® Compile the algorithm-related functions to execute-only code;

Place the algorithm program code to the main Flash memory sector 2;

® Place the coefficients of filter functions to the main Flash memory sector 4;
® Execute FIR_lowpass_filter() in the main program to verify its correctness;
® |f correct, set sector 2/3 as the instruction security library and sector 4/5 as the data security

library, which can be completed by calling the slib_enable() function in the main program or
using Artery ICP Programmer (it is recommended to use ICP tools to complete configurations);

® Generate the header file and symbol definition files that are used by end-user program to call
low-pass filter functions.

Generate execute-only code

Each toolchain has specific setting options to prevent the compiler generating literal pools and
branch table that can read data while executing instructions, such as “LDR Rn, [PC, #offset]".
Section 2.4 lists examples of literal pools and branch table.

For Keil® pvision, it has the Execute-only Code option, which can be set as follows:

Keil® pvision: Set Execute-only Code option

Operate as follows:

® Select C file group or individual C file (in this example, the C files to be protected are placed in
“fir_filter”);

® Right click and select the corresponding files (for example, the Option for File ‘arm_fir_f32.c’),
as shown in Figure 9;

16 Ver 2.0.2

ll?l_ ? AT32F403A/407 Security Library Application Note

Figure 9. Enter Option interface in Keil

=5 fir_filter
%_)l arm_fir f32.c -
@ arm_fir_init_f32.c ﬁﬁ\ Options for File "arm_fir_f32.c... Alt+F7
_’| fir_coefficient.c Remove File "arm_fir_f32.c
B ﬁj flr_ﬁlter.c ﬁ Manage Project [tems...

® Tick “Execute-only Code” in the C/C++ interface, and the “--execute_only” instruction is added
to the compiler control string, as shown in Figure 10;

Figure 10. Select Execute-only Code in Keil

Properties C/CH l
Preprocessor Symbols
Define: |
Undefine: |
Language / Code Generation
W Exscuteonly Code 7 Strict ANSIC AT
Optimization: |:default> ﬂ [¥ Enum Container always int All Wamings ~
[Optimize for Time [¥ Plain Charis Signed [+ Thumb Mode
[Spiit Load and Store Muttiple [¥ Read-Only Position Independent [¥ Mo Auto Includes
[One ELF Section per Function [+ Read-Write Position Independent [+ C99 Mode
Include
Paths | |:|
Misc
Controls
Compilaj —execUte onh'j —cpu Cortex-M4 fp -0 MICROLIE g 00 —apes=interwork —split_sections -l .\ 0. &
control Ninc -1 L Nibrarieshemsishemdcore_support - L Nibrariescmsis
string ~
[1):4 | Cancel Defanlts Help

® The arm_fir_f32.c, arm_fir_init_f32.c and fir_filter.c files are in the SLIB_INSTRUCTION area,
and these files need to be set as generating execute-only code.

IAR: Set No dataread in code memory option
Operate as follows:

® Select the corresponding file in the fir_filter group; right click and select Option;

Figure 11. Enter Option interface in IAR

= il fir_filter
| = B TR

Options...

| @ B arm_fir_init_{32.c
| F& B fir_coefiicient.c
| L& Bfir_fiterc Make

® Enter "C/C++" interface and tick “Override inherited settings” and “No data read in code
memory”, as shown in Figure 12;

2022.4.13 17 Ver 2.0.2

ll?l_ ? AT32F403A/407 Security Library Application Note

Figure 12. Set C/C++ options in IAR

[Exclude from build

Categaomn: | Owverride inherited zettings |
Static Analysis
Runtime Chedking
Custom Build Preprocessor | Iiagnostics | NISE&-C: 2004
WISRA-C:1998 | Encodings | Extra Optiens
Language 1 | Language 2 | Code | Optimizations | Output | List

Frocessor mode

Arm
(@ Thumb

Fozition-independence

Dfode and read-only data [(ropil:
Dﬁeadrrwrite data (rwpil
Ho dymamic readfwrite initializati

Ho data reads in code memory

QK] [Cancel

® The arm_fir_f32.c, arm_fir_init_f32.c and fir_filter.c files are in the SLIB_INSTRUCTION area,
and these files need to be set as generating execute-only code.

3.4.2 Compile security library address

As aforementioned, the first sector (sector0) of the main Flash memory is used to store interrupt
vector table. Therefore, the security library is set from sector 2 in this example, with sector 2 and
sector 3 being set as instruction security library, and sector 4 and sector 5 being set as data
security library. Figure 13 shows the main Flash memory mapping and RAM patrtition. The main
purpose of RAM partitioning is to avoid the same RAM being used by sLib-protected code and end-
user code.

2022.4.13 18 Ver 2.0.2

?r ? AT32F403A/407 Security Library Application Note

Figure 13. Main Flash memory mapping and RAM partition

0x20000000 0x08000000
Vector table
User RAM User code
Ox08000FFF
0x20016FFF 0x08001000
0x20017000 SLIB_INSTRUCTION
SLIB used RAM -
Ox08001FFF
0x08002000
SLIB_DATA
0x08002FFF
0x08003000
User code
OXO80FFFFF

Keil® pvision: scatter file

Operate as follows:

® Click Project > Optios for Target->Linker, untick “Use memory layout from Target Dialog” and
click “Edit” to open and modify slib-w-xo.sct file, as shown in Figure 14:

Figure 14. Set Linker option in Keil

=
K Options for Target 'at_start_f403a’ [ﬁJ
Device] Target] Dutput] Listingl Tzer] C/CH] A=m Linker]Debug] Utilities]
I ™ Use Memory Layout from Target Dialog ¥/0 Base
[~ Make RW Sections Position Independent R/O Base: |0x08000000
™ Make RO Sections Position Independent RAW Base |exz0000000
I” Dont Search Standard Libraries
¥ Report might fail' Conditions as Emors faatle N |
| Scat [
CEer | slb-wo sct . Edi...
£ \slib-wo s J
Misc —symdefs=fir_fitter_symbol b
controls il
Linker |cpu Cortex-M4fp *o -
contral |ibrary_type=microlib —strict —scatter " \slib-wxo sct"
string -
[1):4 Cancel Defaults Help

® Open scatter file, load the object file of the code to be placed in SLIB_INSTRUCTION area to
“LR_SLIB_INSTRUCTION” (a dedicated loading area that starts from sector 2 and occupies
two sectors), and modify the label to “execute-only (+XO)”. In addition, place the area occupied
by SLIB_Data to a dedicated loading area named “LR_SLIB_DATA” to avoid the compiler
compiling other non-IP-code functions to the SLIB area. The RW_IRAM2 assigns the region
from 0x20017000 to 0x20017FFF to the algorithm functions to avoid the same RAM region

2022.4.13 19 Ver 2.0.2

’I?F ? AT32F403A/407 Security Library Application Note

being used by end-user project, causing fault or error in program execution.

Figure 15. Modify scatter in Keil

LR_IROM1 0x08000000 0x001000 { : load region siz
ER_IROM1 0x08000000 0x001000 { : load address =
o (RESET, +First)
#(InRoot$$Sections)
ANY (+RO)

e_region
execution address

RW_IRAM1 0x20000000 0x00017000 { ; user RV data
JANY (+RW +Z1)

RW_IRAM2 0x20017000 0x00001000 { . RAM used for slib code
fir filter.o (+RW +ZI)

}

LR_SLIB_INSTRUCTION 0x08001000 0x00001000 { : slib instruction area
ER_SLIBINSTRUCTION 0x08001000 0x00001000 { : load address = sxecution address
arm_fir_init_£32.0 (+X0)
arm fir £32.0 (+X0)
fir_filter.o (+X0)

}

LR_SLIB_DATA 0x08002000 0x00001000 { ; sLib data area
ER_SLIB_DATA 0x08002000 0x00001000 {
}fir_coefficient.o (+R0)

}

LR_IROM2 0x08003000 0x000FDO00 { - user code area
ER_IROM2 0x08003000 0x000FD000 { : load address = execution address
CANY (+RO)

}
}

® |n addition to modifying the scatter file, for the RAM used by IP-Code, users can also use the
Keil “__attribute__ ((at(address)))” descriptor to load variables to 0x20017000, as shown in

Figure 16.
Figure 16. Modify SLIB RAM address in KEIL
61 B5%if defined (__ ICCARM__)
62 | static float32_t firStateF32[BLOCK_SIZE + NUM_TAPS - 1] @ 0x20017000 :
63 | Zelif defined (__CC_ARM)
64 | static float32_t firStateF32[BLOCK_SIZE + NUM_TAPS - 11| _attribute_ ((at(0x20017000))) :
65 “Hendif

® The start address of data security library is sector 4 (0x08002000). To compile the constants
used by FIR low-pass filter functions to this address, users can modify the scatter file as
aforementioned, or use the Keil “__attribute__ ((at(address)))” descriptor to load the constants
to a fixed address, as shown in Figure 17.

Figure 17. Modify SLIB constant address in KEIL

578%if defined (__ICCARM__)

58 Hconst float32_t firCoeffs32[NUM_TAPS] @ 0x08002000 ={

59 |felif defined (__ CC_ARM)

60 Hconst float32 t firCoeffs32[NUM_TAPS] | attribute_ ((at(0x08002000))) |= {
61 rHendif

62 —0.0018225230f, -0.0015879294f, +0.0000000000€f, +0.0036977508f, +0.0080754303f, +0.00
63 —0.0341458607f, -0.0333591565f, +0.0000000000€f, +0.0676308395f, +0.1522061835f, +0.22
64 +0. 1522061835f, +0.0676308395f, +0.0000000000f, -0.0333591565f, -0.0341458607f, -0.01
65 | +0. 0080754303£, +0.0036977508f, +0.0000000000f, -0.0015879294f, -0.0018225230f

66 :

2022.4.13 20 Ver 2.0.2

?r ? AT32F403A/407 Security Library Application Note

IAR: ICF file

Operate as follows:

® Open the icf file in \project_IOMIAR_V8.2\, and add three new SLIB loading areas as shown in
Figure 18. The SLIB_RAM region reserves the RAM (0x20017000 ~ 0x20017FFF) for the
algorithm functions.

Figure 18. SLIB address definition in icf

/% SLIB INSTRUCTION area #*/

define svmbol _ ICFEDIT region SLIB _INSTRUCTION start = 0x08001000;
define svmbol _ ICFEDIT region SLIB_INSTRUCTION end = 0x08001FFF;
/% SLIB DATA area */

define svmbol _ ICFEDIT region_ SLIB DATA start = 0x08002000;

define svmbol ICFEDIT region SLIB DATA end = = 0x08002FFF:

define svmbol _ ICFEDIT region RAM start = 0x20000000;

define svmbol _ ICFEDIT region RAM end = 0x20017FFF;

/% SLIB RAM region #*/

define svmbol _ ICFEDIT region SLIB RAM start = 0x20017000;

define svmbol _ ICFEDIT region SLIB RAM end = 0x20017FFF;

® Inthe icf file, the area occupied by SLIB is reserved to avoid the compiler compiling other non-
IP-code functions to the SLIB area, and the RAM region used by IP-Code is reserved.

Figure 19. Address assignment in icf file

Reserved 0x08001000 ~ 0x08002FFF az SLIB area *
define region ROM_region = mem:[from _ ICFEDIT region_ROM_start_ to __ ICFEDIT_region_ROM_end_]
—mem: [from _ ICFEDIT region_SLIB_INSTRUCTION start__ to __ ICFEDIT_ region_ SLIB_INSTRUCTION end]
—mem: [from __ ICFEDIT_region_SLIB_DATA start__ to _ ICFEDIT region SLIB_DATA end_]
define region SLIB_INSTRUCTION region = mem:[from __ ICFEDIT region_SLIB_INSTRUCTION start__ to _ ICFEDIT region_ SLIB_INSTRUCTION end_]:
define region SLIB _DATA region = mem:[from _ ICFEDIT region_SLIB_DATA start__ to __ ICFEDIT region_SLIB_DATA end_ 1:

Reserved 0x20017000 ~ 0x20017FFF as RAM used for SLIB code *

define region RAM_region = mem:[from _ ICFEDIT region_RAM_start_ to __ ICFEDIT_region_RAM end_]
— mem: [from __ICFEDIT_region_SLIB_RAM start__ to _ ICFEDIT region SLIB_RAM end_]:
define region SLIB_RAM region = mem:[from __ ICFEDIT region_ SLIB_RAM start__ to _ ICFEDIT region SLIB_RAM end 1:

® [or the RAM used by IP-Code, users can use the IAR @ descriptor to load variables to a fixed
address 0x20017000 or modify the icf file, as shown in Figure 20.

Figure 20. Modify IP-Code RAM in icf file

place in RAM region { readwrite,
block CSTACE, block HEARP };

/* Place slib used sram */
place in SLIB RAM region { readwrite object fir filter.o }:

® The start address of data security library is sector 4 (0x08002000). To compile the constants
used by FIR low-pass filter functions to this address, users can modify the icf file as
aforementioned, or use the IAR @ descriptor to load the constants to a fixed address, as
shown in Figure 21.

2022.4.13 21 Ver 2.0.2

ll?l_ ? AT32F403A/407 Security Library Application Note

Figure 21. Modify SLIB constant address in IAR

J#if defined (_ ICCARM__)}
Jdeenst fleat32 t firCoeffs3Z[NUM_TAPS] @ Oxz08002000 ={
#elif defined { _ CC_ARM)
dJeconst float3Z t firCoeffsBZ[NUM_TAPS] __attribute__((at(DxDBDDZDDD))) = {
#endif
-0.0018225230f, -0.0015879294f, +0.0000000000f, +0.0036977508f, +0.0080754303F,
-0.0341458607f, -0.03335%1565f, +0.0000000000f£, +0.067Y630839%5f, +0.1522081835f,
+0.1522061835fF, +0.0676308295f, +0.0000000000f, -0.0333521565F, -0.03414586071,
+0.0080754303f, +0.003g977508f, +0.0000000000f, -0.0015879224f, -0.0018225230fF

3.4.3 Enable sLib protection

There are two methods to enable sLib protection:

(1) Use Artery ICP Programmer (recommended)
It is recommended to use the ICP Programmer as follows:

® Connect AT-Link emulator to AT-START-F403A board and power on;
® Open ICP Programmer, select AT-Link for connection, and add the HEX or BIN file generated
by Project_L0O, as shown in Figure 22.

Figure 22. Configure ICP Programmer

I Artery ICP Programmer_V2.4.24 Lo [

File J-Link settings ~ AT-Link settings Target Language Help

Part Number: AT32F403AVGT7 FlashSize: 1024KB ’| ?r ?
Disconnect =L
AT-Link-EZ2 FW: V1.5.10

i - =+
AT-Link SN: 8D105C11008045410517ED02 ﬂ- 4#

] sPIMm FLASH DA 0 @ Remapl (Use

Memory read settings

Address Ox 08000000 Read size 0Ox 000003CC Data bits ’S bits v] [Read]
File info
No. File name File size Address range(0x) Add

at32f403a_project_|0.hex 9232 08000000-080003CB,08001000-08001117,04

1 [T | 3

[Flash CRC]

File CRC verifyl [DownLoad

Flash info | File:at32f403a_project_|0.hex |

Address range:[0x08000000 0x080003CE] Address range:[0x08001000 0x08001117] Address range:[0=08002000
0x080020731 Address ranae:[0x08003000 Ox08004EB7] checksum: Ox000D6E92

Address o {2 [z |5 |l |5 e [7 [[& |9 [[a |8 [c [0 [E [F [fa:~
40 [18 |00 |20 [o1 [30 |00 |08 |18 [36 |00 |08 |13 |36 |00 |08 |@i—

0x03000010 17 |36 |00 (08 |F3 (35 |00 |08 (99 (36 |00 (08 (o0 |00 (00 |00 (o6

0x08000020 00 (00 (00 |00 (00 (o0 |00 |00 |00 (00 (00 |00 [1IF (36 |00 (0B ..

® Click “Download” and the “Download Form” pops up, which shows SLIB status and relevant
parameters. Set sector 2 as the start sector, sector 4 as the data start sector and sector 5 as
the end sector; set the enable password as “0x55665566” (user-defined), tick “Enable SLIB”,
and then click “Start Download” to complete programming and enable SLIB, as shown in
Figure 23.

2022.4.13 22 Ver 2.0.2

ART

? AT32F403A/407 Security Library Application Note

3.44

2022.4.13

Figure 23. Set parameters in Download Form

r —

[V Download Form
I —

S —— - : ﬁ)

cLib status
sLib status: Disable

Enable password Ox 33663366

Disable password Ox

Disable sLib

Extra options

Remaining usage times: 246

Main Flash

Start sector [Sector 2--0x08001000

DATA start sector [secmr 4--0x08002000

Tfoonis |Sector 5-0x08002800

[Erase the sectors of file size

Verify

[] Jump to the user program

[7] Write software serial number(SN)

N 08010000

00000001

00000001

[T Write user system data

Enable sLib

[7] Disable FAP before download

[7] Enable FAP after download

[7] Button free mode

Start Download

v] [7] Disable sLib before download

For details about ICP Programmer, refer to ICP Programmer User Manual.

(2) Use slib_enable() function in main.c

After the slib_enable() function is verified correct by low-pass filter function and then executed, the
sLib protection can be enabled. To execute this function, enable the “#define

USE_SLIB_FUNCTION” in main.c.

Project_LO execution process

In this example, FIR low-pass filter calculates the input signal (testinput_f32_1kHz_15kHz) mixed
with 1 KHz and 15 KHz sine waves, and the output 1 KHz sine wave data is saved in testOutput,
which will be compared with the data calculated by MATLAB and saved in refOutput. If the error
value is smaller than expected (SNR larger than the preset threshold), the green LED on the board

blinks; otherwise, the red LED blinks. Figure 24 shows the Project_LO execution process.

23

Ver 2.0.2

:'=/| ?I_

5

AT32F403A/407 Security Library Application

Note

2022.4.13

Figure 24. Project_LO execution process

~(

Start

)

Execute
system rest to activate
SLIB

T

l

LED3 toggle
continuously

User button
Pressed ?

yes

Yes

SLIB
Operate
uccessfully?

\ 4
Green LED4 on Execute
FIR filter
3 seconds
test

Check
FIR test
result

Success

SLIB
already
enabled?

Enable SLIB

Yes

\4

Green LED4 toggle
in infinite loop

Go through the following steps to execute this example program:

(1)

()

®3)

(4)
(5)

Use Keil® pvision to open the Project_LO under
\utilities\at32f403a_407_slib_demo\project_l0\mdk_v5\, and then compile;

Before downloading the code, check whether the chip on AT-START-F403A board is SLIB-
protected or write/read-protected (FAP/EPP). If it is protected, use ICP programmer to disable
protection and then download the code;

After successful download, start to execute the code, and the on-board LED3 keeps blinking
rapidly;

Press the on-board USER button to perform operation of low-pass filter;

Compare the computation result. If it is correct, the green LED4 keeps blinking; otherwise, the

24 Ver 2.0.2

?r ? AT32F403A/407 Security Library Application Note

red LED2 keeps blinking;

(6) After obtaining the correct result, if the USE_SLIB_FUNCTION in main.c is defined and the
SLIB is not enabled, the slib_enable() function will be executed to set SLIB. If SLIB setting
fails, the red LED2 will be always ON; if SLIB setting succeeds, the green LED4 will be ON for
about three seconds and then perform system reset to enable SLIB; then, go to step (3).

3.4.5 Generate header file and symbol definition file

The header file and symbol definition file are used when the Project_L1 calls FIR low-pass filter
functions, which is the fir_filter.h file in main.c in this example.

The generation of symbol definition file is related to the specific toolchain being used.

Use Keil® pvision to generate symbol definition file

Operate as follows:

® Enter Options for Target - Linker interface;

® Add “--symdefs=fir_filter_symbol.txt” command in the Misc controls, as shown in Figure 25;

Figure 25. Set Misc controls in Keil

Kk Options for Target "at_start_f403a' &J
Device I Target] Output] Listing] User] C/CH] h=m Linker]Debug] Utilities]
[Use Memory Layout from Target Dialog ¥/0 Base:
[Make RW Sections Position Independent R/0 Base: (03000000
™ Make RO Sections Postion Independent R/W Base |0<20000000
I™ Dont Search Standard Libraries
i ! i .
Iv¥ Report ‘might fail' Conditions as Emors disable Warrings: |
Scatter | \glib-wo sct Edit...
File | J
|
Misc —symdefs=fir_filter_symbol bd
controls jt
Linker |-cpu Cotex-M4fp *o -
control |Hibrary_type=microlib —strict —scatter " \slib-w-xo sct™
string o

| Defaults |

Help |

® After compiling the project, a symbol definition file named “fir_filter_symbol.txt” is generated
under project_I0\mdk_v5\Objects;

® This symbol definition file contains all symbol definitions of the project, and it needs to be
modified to only remain the definitions of low-pass filter functions to be called by end users.
The modified fir_filter_symbol.txt is shown in Figure 26;

Figure 26. Contents of modified fir_filter_symbol.txt

0x08001001 T FIR lowpass filter

2022.4.13

25

Ver 2.0.2

’I?F ? AT32F403A/407 Security Library Application Note

Use IAR to generate symbol definition file
Operate as follows:
® Select Project->Option—->Build Actions

Figure 27. Set Build Actions in IAR

: ,

Categary:

General Options

Static Analysis

Runtime Checking
C/C++ Compiler
Assembler

Euild Actions Configuration

Pre-tuild command line:

Output Converter
Custom Build D
3
Linker |$TDDHC[T_DIR$\bin\i symexport. exe ——edit “$FROT_DIEf\=zt. DI
Debugger
Simulator
CADI
CMSIS DAP
GDB Server
I-Het/ITAGIet
J-Link/J-Trace
TI Stellaris
Nu-Link
PE micro
STLIMK
Third-Party Driver
TIMSP-FET
TIXD5

=t ot

ak] [Cancel

® Input the following commands to the Post-build command line:

$TOOLKIT_DIRS$\bin\isymexport.exe --edit "$PROJ_DIRS$\steering_file.txt"
"$TARGET_PATHS$" "$PROJ_DIRS$\fir_filter_symbol.0"

® The fir_filter_symbol.o is the symbol definition file to be generated, and the steering_file.txt is
saved under project_lO\iar_v8.2, which is used to select function symbols to be generated.
Users can manually edit according to the contents called by sLib. As shown in Figure 28, the
"show" is the command used to select functions.

Figure 28. Edit steering_file.txt content

show FIR lowpass filter

3.5 Project _L1: example for end users

Project L1 uses the FIR low-pass filter function that is debugged in Project_LO, programmed to
AT32F403A MCU main Flash memory and SLIB-protected According to the header file, symbol
definition file and the main Flash memory mapping of Project_LO, end users can complete the
followings for Project L1.:

® Create an application project;
® Add the header file and symbol definition file provided by Project_LO to the project;

® Call the FIR low-pass filter function;

2022.4.13 26 Ver 2.0.2

<[

? AT32F403A/407 Security Library Application Note

3.5.1

3.5.2

2022.4.13

® Develop and debug user’s program.
Notes:

Project_L1 must use the same toolchain and the same version of the compiler as that of
Project_LO; otherwise, incompatibility problem may occur and the code provided by Project_LO
cannot be used properly. For example, Project_LO uses Keil® pvision V5.18.0.0; therefore,
Project_L1 need to use the same version.

Create user application project

The security library enabled in Project_LO occupies some specific main Flash memory sectors;
therefore, the address for Project_L1 code storage should be compiled according to the main Flash
memory mapping of Project_LO, as shown in Figure 13. In the main Flash memory, sector 2~
sector 5 are occupied by the security library, and end users need to isolate this region by using
linker control file to avoid code being compiled to this region.

Keil® pvision: scatter file

Refer to the end_user_code.sct file under project_I1\mdk_v5\ and divide the main Flash memory
into two regions, and the middle part is the SLIB-protected area. In addition, the area after
0x20017000 needs to be reserved for the RAM area, as shown in Figure 29.

Figure 29. Modified scatter file

LE_IROM1 0x08000000 Ox00001000 . load region =ize_region
EF_IROM1 0x08000000 0x00001000 { : load addresz = execution address
#, 0 (RESET, 4First)
* (InRoct$fSectionz)
ANV (+RO)

1

EW_IRAMI 0x20000000 000017000 1 ; RYW data
CANT (+RW +IT0

1

o Dx20017000 7 Ox20017FFF RaM rezerved for SLIE code

; 0x08001000 7 O0x0B8002FFF is SLIE area

LE_IROMZ 0Ox08003000 Ox000FDOO0 ; load region =ize_region
EE_IROMZ 0x08003000 0x000FDOOD { ; load address = execution address
. LMY (+R0)

1
h

IAR: ICF file

Refer to the enduser.icf file under project_I1\iar_V8.2\, as shown in Figure 30.

Figure 30. Modified icf file

/* Reserved SLIB area */
define region ROM region = mem: [from _ ICFEDIT region ROM start to _ ICFEDIT region ROM end]
-mem: [from _ ICFEDIT region_ SLIEB_start_ to _ ICFEDIT region SLIB end 17

define region RAM region = mem: [from _ ICFEDIT region RAM start to _ ICFEDIT region RAM end]
— mem: [from __ICFEDIT_region_SLIB_RAM_start__ to __ICFEDIT_region_sLIB_RAM_end__];

Add symbol definition file to project

The symbol definition file fir_filter_symbol.txt generated in Project_LO must be added to Project_L1,
so that it can be correctly compiled and linked to the SLIB-protected area code.

27 Ver 2.0.2

’I?F ? AT32F403A/407 Security Library Application Note

Add symbol definition file in Keil® pvision

Add fir_filter_symbol.txt to the project, as shown in Figure 31.

Figure 31. Add symbol definition file in Keil

=% Project: project_l1
=4 at_start_f407
[wser
[d bsp
[firmware
[J emsis
[l fir filter
1 fir_filter_symbol.tet
L1 readme

After adding this file to fir_filter, modify its file type from “text” to “Object”, as shown in Figure 32.

Figure 32. Modify symbol definition file type to “Object file”

kJ Options for File 'fir_filter_symbol.txt" @

Froperties }

File Tite: |Obiect file 7 Include in Target Buid
" K
SR 17 Bytes
last change: |Fri May 21 11:14:16 2021 ~
-
Stop on Exit Code: |Hnt specified J F
Custom Arguments: |
Memory Assignment:
Code / Const: ‘:dafauh) ﬂ
Zero Inttizlized Data: ‘:dafau)b j
Cther Data: “dE{an ﬂ
0K | Cancel Defaults Help

Add symbol definition file in IAR
Add the fir_filter_symbol.o (Object) file to fir_filter, as shown in Figure 33.

Figure 33. Add symbol definition file in IAR

rlies Tl -
2 @ project_I1 - at_start_f... +
M bap .
B crrisis ™
21 S fifiltar

LE [fir_filter_symbal.o
 TiFFrTware ™
M readme
B user ™
B Output

2022.4.13 28 Ver 2.0.2

’I?f ? AT32F403A/407 Security Library Application Note

3.5.3 Call functions in SLIB-protected area
When the filter.h header file is referred in main.c and the symbol definition file is added to the
project, the low-pass filter function in the protection area can be called, as shown below:
FIR_lowpass_filter(inputF32, outputF32, TEST_LENGTH_SAMPLES);
Where,
® inputF32: pointer containing input signal data table;
® outputF32: pointer storing output signal data table;
® TEST_LENGTH_SAMPLES: the number of signal samples to be processed.

3.5.4 Project_L1 execution process

Figure 34 shows the execution process of Project L1:

® Start execution, and LED3 will keep blinking;

® Press the USER button on AT-START board, and the FIR_lowpass_filter() starts operation;

® |f the result is correct, the green LED4 will keep blinking; otherwise, the red LED2 will keep
blinking.

Figure 34. Project_L1 execution process

)
i

LED3 toggle
continuously

User button
Pressed ?

yes

Execute
FIR filter
test

Check
FIR test
result

Green LED4 toggle

L “@—Success
in infinite loop

3.5.5 SLIB protection in debug mode

Development tools are used by end users to debug codes when developing applications. This
section takes Keil® pvision as an example to introduce how to protect codes in the SLIB-protected

2022.4.13 29 Ver 2.0.2

?r ? AT32F403A/407 Security Library Application Note

area from being read as data in debug mode.

® Open Project_L1 and compile;

® Click “Start/Stop Debug Session” to enter debug mode;

® Right click in the “Disassembly” interface and select “Show Disassembly at Address”, as

shown in Figure 35.

Figure 35. Enter Show Disassembly at Address

| == | = = | = mirstaters: v G ¥ (M| W VL WR [T N
IENENCIE =R L R
@ Disassembly LN -]
|| oxoso03ESz 470 BX ir ~
94: AT32_Board Init():
as:
98: /* Configure Flash to generate ||| mixed Mode error occur +/
|@0x08003E54 2804 cup 0D Mod
0x08003E56 D106 BNE 0x080 B ORE
97: Enable_Flash_INTi}: Address Range »
ECH
59: Show Disassembly at Address...
1003 /% Wait for KEY button to be p Set Program Counter
O0x08003ES8 490% LDR £1, [p Aumto Cursar R
0x08003ESL 6303 LDR 1, [N R =
E; :lhlle (AT32_BUTTON State (BUTTON | 0o o ercakpoint
0x08003ESC FOS10104 ORRS £1,r1| O Enable/Disable Breakpoint ctri+Fg
0x0S003E60 4R08 LDR £z, [p
| oxosoo3Esz so11 STR r1, [r Insert Tracepoint at "Ox L
104: Delay_ws (300 Enable/Disable Tracepoint
105: 3
106: Inline Assembly...
107: /% Turn Off LED3 #/ Load Hex or Object file...
0x0B003E64 EDOS B 0x080
0x0B003E66 4307 LDR 1, [p T ' N
€ N] Execution Profiling v >
_] main.c T Insert/Remove Bookmark ctri-F2 < =8

o El call Stack 53 copy Ctrl=C k|
L Lib_Vi.x.x\iUrilicies\\AT32F4034_%

Name Cocation/V... Type

® Enter the address “0x08001000” of SLIB_INSTRUCTION start sector (sector 2);

Figure 36. Set Show Code at Address

Show Code at Address X

Address:

|nxnanmnnu | GoTo |

® As shown in Figure 37, codes from 0x08001000 are all OXFFFFFFFF;

Figure 37. View codes

TpEssa- g -8 2-m%-
| Disassembly N x |
TE: o -
GG uint3z_t i;
0x08001000 FFFFFFFF DCD OxFFFFFFFF
0x08001004 FFFFFFFF DCD OxFFFFFFFF
0x08001005 FFFFFFFF DCD OxFFFFFFFF
=N uint3zZ_t numBlocks = testlengthsamples/BLOCK_SIZE:
0 arm fir_instance £3z 5;
81
=
83: £*% Call FIR init function to initialize the instance structure. *f
0x0800100C FFFFFFFF DCD OxFFFFFFFF
G4 arm_fir_init_f£32 (&5, WUM_TAPS, (floatdz_t *)&firCoeffs3Z[0], &firStateF32[0], blockSize
851 I
g6 ** Call the FIR process function for every blockSize samples
87 wE "
0x08001010 FFFFFFFF DCD OxFFFFFFFF
0x05001014 FFFFFFFF DCD OxFFFFFFFF
0x08001018 FFFFFFFF DCD OxFFFFFFFF
0x0800101C FFFFFFFF DCD OxFFFFFFFF
0x08001020 FFFFFFFF DCD OxFFFFFFFF
0x05001024 FFFFFFFF DCD OxFFFFFFFF
O0x080010258 FFFFFFFF DCD OxFFFFFFFF
0x0800102C FFFFFFFF DCD OxFFFFFFFF
0x08001030 FFFFFFFF DCD OxFFFFFFFF
J 0x05001034 FFFFFFFF DCD OxFFFFFFFF hd
R >
D S B S S . L1 | L] -

2022.4.13 30 Ver 2.0.2

?r ? AT32F403A/407 Security Library Application Note

® Similarly, enter address 0x08001000 in “Memory” window, and codes are all OxFF, as shown
in Figure 38;

Figure 38. View codes in Memory

Memary 1 i x|

Addhess: 008001000 D .

0x08001000: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0x08001013: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0x080010z6: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0x08001035: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0x0800104C: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0x0800105F: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0x08001072: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
1|0x08001085: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
N=NANN1038: FF FF _FF FF FF FF FF FF FF FF FF

0 Call Stack + Locals

® In the “Memory” window, enter the address 0x08002000 of SLIB_DATA start sector (sector 4);
this region is allowed to be read through D-Code bus, so original values can be found, as
shown in Figure 39;

Figure 39. View SLIB_DATA start sector in Memory

Memary 1 L * |

Adhess: [DW0B00Z000 D 2

Ox05002000: E9
Ox05002013: 3C
Ox05002026: 08
Ox05002039: 41
Ox0500204C: 9C
Ox0800205F: 3C
Ox05002072: EE
Ox08002Z085: FF
OxNRAN2N38: FF

A Call Stack + Locals

® In the “Memory” window, double click to modify the value of 0x08002000, and a warning pops
up by setting EPPERR=1 in the FLASH_STS register, indicating the protection is enabled,;

Figure 40. SLIB write test

Property Yalue
PSR 000000030 =
UNLOCK o
USD_UNLOCK _
ODF r
EPPERR v
PRGMERR r
OBF r

® |n case of enable erase/program protection error interrupt, continuing execution will enter the
interrupt program;

2022.4.13 31 Ver 2.0.2

ll?l_ ? AT32F403A/407 Security Library Application Note

Figure 41. Write protection error interrupt

115 wvoid FLASH IRQHandler (void)
116 2 {
& 117 ‘ :i:f (flash flag get (FLASH EPPERR_FLAG))
1188 {
119 flash flag clear (FLASH EPPERR FLAG)
120 delav ms (500) ;
121 + }
122 |}

2022.4.13 32 Ver 2.0.2

ART

? AT32F403A/407 Security Library Application Note

4

4.1

2022.4.13

Integrate codes and download

After codes of the solution provider and end user are well designed, download to the same MCU on
the premise of guaranteeing code security. Project_LO and Project_L1 are used to introduce two
downloading methods for reference.

This operation involves offline downloading mode of AT-Link. For details, refer to operation
manuals of ICP and AT-Link.

Program codes separately

Firstly, the solution provider programs SLIB codes to MCU; then, the end user programs application
codes to MCU. The process is as follows:

(1) Method A: The solution provider uses ICP tool to save the SLIB code in the compiled project
as BIN or HEX file: download the complete project to MCU (do not configure SLIB and FAP),
read the corresponding SLIB codes (0x08001000~0x08002FFF) by using the memory access
function, and then click “File-Save Flash data as” to save the codes as BIN or HEX file. In this
example, it is named “slib.bin”, as shown in Figure 42.

Figure 42. Save SLIB codes

(® Artery ICP Programmer_V2.4,24 = S|
m J-Link settings AT-Link settings Target Language Help
save flle as .. T32F403AVGT7 FlashSize: 1024KB ’l ?r ?
| Save flash data as... e -
Make encryption file 109C11008045410517BD02 ﬁ 4% jj
Exit 0 2

Memory read settings

Address [lx 08001000 Read size Ox 2000 Dhta bits lﬁ bits '] [Read l

File info

MNo. File name File size Address range{0x) Add
1 at32fa03a_project_|0.hex 9232 08000000-080003CE,08001000-08001117,0¢

<« [m r

l Flash CRC I

File CRC verifyl [DownLoad

Flash info | File:at32f403&_project_|0.hex|
Address range:[0x08001000 0x08002FFF] checksum: 0x0015062E

Address o 1 2 3 4 3 & 7 8 9 A B C D E F . -

2D- ES |FF |47 |06 |46 (OF |46 (30 (46 |20 |25 |4F |EA |58 |19 |-%

02001010 47 |F2 |00 |03 (C2 |(FZ2 |01 (03 (42 |F2 |00 |02 |CO |F6& |00 |02 |G?
002001020 1> |21 |01 |A8 (00 (95 (00 |FO (58 |(F8 (OO |24 |OC |EO |04 |FB |!z¢
02001030 05 |(F0 |07 |EB |80 (02 |04 |FB (05 |FO |06 |EB (80 |01 |2B |46 |o%

02001040 0L A8 |00 |FO |05 |FB |84 |1C [4C (45 |F0 |D3 |BD |EB |FF |87 |CF

Method B: The solution provider uses the compiled project to generate a bin file directly, and
take the corresponding section in the SLIB area. For example, in the KEIL project, add “fromelf.exe

33 Ver 2.0.2

AR

AT32F403A/407 Security Library Application Note

--bin --output .\Listings\@L.bin 'L” in the “user” option to generate a bin file of the corresponding
firmware, and add a suffix “.bin” to the SLIB area file. In this example, they are “ER_SLIB.bin” and
“‘ER_SLIB_DATA.bin”, corresponding to the SLIB-INSTRUCTION file (0x08001000) and SLIB-
DATA file (0x08002000), respectively, as shown in Figure 43.

Figure 43. Generate bin file of SLIB code

WO —rroris o s ge s e e oo

=

Davice | Target | Output | Listing Vser |c/C#+ | hsm

Command Items User Command
[=)-Before Compile C/C++ File
[~ Run=1
[~ Run#2
(=) Before Build/Rebuild
[~ Run#l
[~ Run#2
[=I-After Build/Rebuild
[+ Run#1
[~ Run#2

fromelf.exe --bin --output \Listings\@L.bin IL

| Linker | Debug | Utilities |

. Stop on Exi.. S..

lj Mot Specified | [
(2] Not Specified | ™

|| ER_IROM1

lj Mot Specified | [~
lj Not Specified | [~

| | ER_IROM2

(3] Not Specified | ™
l_% Mot Specified | [~

| | ER_SLIB_DATA
|_| ER_SLIB_INSTRUCTIOM

(2) Use ICP Programmer to program the ER_SLIB_INSTRUCTION.bin and ER_SLIB_DATA.bin

to MCU, as shown in Figure 44.

Figure 44. Online programming to MCU in ICP

i Artery ICP Programmer_V2.4.24

i DownlLoad Form

File J-Link settings

AT-Link-EZ FW: V1.5.10

AT-Link | AT-Link SN: 8D109C110080454105176D02

[spim 0

AT-Link settings Target Language

Part Number: AT32F403AVGT7

Memory read settings

Help

FlashSize: 1024KB

sLib status

SO0 status: Disable

Enable password Ox 55665566

Breabtepr

Disable sLib

Extra options

Remaining usage times: 246

Main Flash

Start sector Sector 2--0x08001000 -

DATA start sectgr | Sector 4--0x08002000 -

End sector

Sector 5--0x08002800 -

~| [Disable stib before download

Address Ox 08000000 Read size Ox 0D00D3CC Databits [8bits =] [Read | ||l [Erase the sectors of fle size
— It Verify Enable sLib
File info
No. File name File size Address range(0x) Add
1 ER_SLIBINSTRUCTION.bin 280 08001000-08001117 \| [T] Jump to the user program [7] Enable FAP after download
2 ER_SLIB_DATAbin 116 08002000-08002073 [F] Write software serial number(SN}
08010000 [] Button free mode
00000001
Flash CRC] [File CRC verify | [DownLoad]
00000001

Flash info | File:ER_SLIB_DATA.bin

Address range:[0x08002000 0x08002073] checksum: 0x00002C29

Address 0 1 2 3 |4 |s |8 (7 |8 9 |a
0x08002010 CF [4€ |04 |3c |58 |C2 [0B |3C |00 |00 |00
0x0B002020 8 |DC |0B |BD (SC |A3 |0B |BD |00 (0D |00
0x08002030 FO DB |18 |3E |SF |46 |64 3E 06 |41 |80
0x0B002040 FO DB |1B |3E |OA |82 |BA 3D 00 (0D |00

[T] Write user system data

>
——
—

m

[”] Disable FAP befare download

1

Start Download

H

H

]
hlEAR=ak: AL AR -

(3) End users also can use ICP Programmer to set an offline project and save to AT-Link, and
then complete offline programming to MCU through AT-Link, as shown in Figure 45.

2022.4.13

34

Ver 2.0.2

AR

AT32F403A/407 Security Library Application Note

Figure 45. Offline programming to MCU via AT-Link

-
57 AT-Link Setting ——

-

[EEE—)

AT-Link settings | AT-Link offline config settings |AT-Lir1k offline download slatu5|

Offline project l

v] Delete

Project name slib_dewnload Device [AT32F403A +|[AT32F403AVGTZ -
No. File name File size Address range(0x) Storage loca.. Add

1 ER_SLIB_INSTRUCTION.bin 280 08001000-08001117
2 ER_SLIB_DATA.bin 116 08002000-08002073

< |

LI}

| »

Erase option

Erase the sectors of file size

7]

[Download times
[] Encryption transmit
[] Write user system data

[7] Enable FAP after download

Verify

| Software serial number(SN) | SPIM settings | sLib settings |

Enable sLib
sLib enable password Ox

35065366

[7] Disable sLib before download

Download interface

[7] Reset and run

Bain Elach

Start sector [Sector 2--0x0B001000 v]

DATA start sector | Sector 4--0x08002000 ~|

End sector [Sedor 5--0x080:02800 v]

l Load parameters l ’ Save parameters]

Open project]

Save project file

l Save project to AT-Link H Close]

————

(4) After completing step 2/3, end users can get the MCU with programmed SLIB area (SLIB

status: enabled), and program the application code to MCU through online or offline

programming, as shown in Figure 46.

2022.4.13

35

Ver 2.0.2

AR

AT32F403A/407 Security Library Application Note

4.2

Figure 46. End users program codes to MCU

I Artery ICP Programmer_V2.4.24

[DownlLoad Form

File J-Link settings

AT-Link settings Target
Part Number: AT32F403AVGT7

AT-Link-EZ FW: V1.5.10

[E] sPIM

Memory read settings

Address 0x 08001000

AT-Link ~ AT-Link SN: 8D109C11008045410517BD02

Read size Ox 00000118

Language Help

FlashSize: 1024KB

0

sLib status

sLib status: Enable

Enable password Ox 55663566

Disable password Ox

Disable sLib

Extra options

Remaining usage times: 245
Main Flash

Start sector Sector 2--0x08001000 ~

DATA start sector | Sector 4--0x08002000 -

End sector Sector 5--0x08002800 -

Data bits |8 bits =

File info
r
Ne. File name File size Address range(0x) Add
1 at32f403a_project [1hex 7428 08000000-08000358,08003000-08004947
] [3
[Flash CRC] [Fue CRCverifyl [DownLoad

Flash info| File:at32f403a_project_/Lhex ‘

[Erase the sectors of file size

~| 1 Disable stib before dawnload

Verify

[] Jump to the user program

[] Write software serial number(SN)
08010000
00000001

00000001

Address range:[] Address range: 7] checksum: 0xD0DABAAT
Address o[22 E s e E A e e o E e
3§ |13 |00 |20 (01 (30 |00 (08 |F7 |35 (00 (08 |EF |35 |00 |08 |sc
0x08000010 F3 |35 |00 |08 |CF |35 |00 (08 (75 (36 (00 (08 (00 (00 (00 (00 |%.:
0x08000020 00 |00 (00 |00 |00 |00 |00 (o0 |00 |00 [00 (o0 |FB (35 |00 (08
0x08000030 D3 (35 |00 |08 |00 |00 |00 (00 |Fo (35 (00 (08 |FD |35 (00 [0B |1
0x08000040 18 30 |00 |08 08 |0

[C] Write user system data

Enable sLib
[C] Disable FAP before download

[7] Enable FAP after download

[] Button free mode

Start Download

Integrate and pro

gram codes

Integrate the SLIB code of solution provider and the end user application code to an offline project,
and then download the integrated code to MCU through AT-Link offline programming. The process

is as follows:

(1) The solution provider handles the compiled project as aforementioned to get a slib.bin file;

(2) The solution provider uses ICP Programmer to generate an offline project and save it to PC.
Parameters (such as number of download, project files binding to AT-Link and enable FAP
after download) can be configured as needed. Save the offline project as follows.

Note: The offline project is encrypted. To enhance security, the solution provider also can set the slib.bin file
to an encrypted slib.benc and then add it to the offline project. In this case, the offline project can only be used
on the AT-Link with the corresponding encryption key.

2022.4.13

36

Ver 2.0.2

’I?F ? AT32F403A/407 Security Library Application Note

Figure 47. Set offline project
B

[AT-Link Setting

AT-Link settings | AT-Link offline config settings ‘AT-Link offline download 5tatu5|

Offline project [v] Delete -

Project name slib_project

Device [AT32 F403A - I IATE 2FA03ANGTT

No. File name. File size Address rangs(0x) torage loca.. || Add

1 ER_SLIB_INSTRUCTION.bin 280 08001000-08001117
2 ER_SLIB_DATA.bin 116 0B002000-08002073

< n v

Erase option |Erase the sectors of file size ']

[[] Download times Download interface

[T Encryption transmit Verify [7] Reset and run

[C] Write user system data

[7] Enable FAP after download

‘ Software serial number(SN) | SPIM settings | sLib settings ‘

Enable sLib IMain Flash

slib enable password Ox 55665566 start Jector [W]

[7] Disable sLib before download DaTAlstart sector [Sector4--ox0z002000 = I AT-Link project file settings SR
End sctor [sector 5--0xos002800__ ~|

This project is only used at the specified AT-Link.
[Load parameters] [Save parameters

AT-Link SN : CFD275220040B56D0117C502

This project is only used once.

Open project l Save project to AT-Link] l Close] AT-Link AIN :

Save project file

FOOFA432D013A913

Eancel

(3) After obtaining the offline project, the end user should use ICP Programmer to open the project
file and add the application codes to the offline project; then save to PC or AT-Link, and
perform offline download. Figure 48 shows how to add the project file.

Note: To protect codes from being leaked or decoded, do not other change settings when adding code file to
the offline project, which requires the solution provider to configure the final settings in advance.

—— —
2022.4.13

Ver 2.0.2

,’I?l' ?Y AT32F403A/407 Security Library Application Note

Figure 48. Add project file

[— - =
47 AT-Link Setting U=LL =

AT-Link settings | AT-Link offline config settings |AT-Link offline download statu5-|

Offline project l v] Delete

Project name slib_project Device |AT32FA03A ~||AT32F403AVGTT -

Mo, File name File size Address range(0x) Storage loci * Add

1 ER_SLIB_INSTRUCTION.bin 280 08001000-08001117 El [Delete

2 ER_SLIB_DATA.bin 116 08002000-08002073

2 A2 MAND A wminct 11 b NSA nNonnnnn.NeNNN2 00 S
4|] ,

Erase option |Erase the sectors of file size v| |
[] Download times E Download interface |SWD v| |
[] Encryption transmit 4] Verify [] Reset and run
[] Write user system data | |
[] Enable FAP after download
| software serial number(SN) | SPIM settings| sLib settings | |

[¥] Enable sLib sLib position |Main Flash v|

zlibh anab —rE=rT O HRKERHEE

SLAGEL B[Eae sl Heriemdar |sector 2--0x08001000 |

[] Disable sLib before download DATA start sector |5E.,_—t0|—4__gxg.gg.g.gooo v|

sLib disable password Ox : End sector |5ector5--oxoaoozsoo —|

| Load parameters | Save parameters |

l Open project I Save project file I [Save project to AT-Link l l Close l

| This project is only used once.

This project is only used at the specified AT-Link.

— T —— S

2022.4.13 38 Ver 2.0.2

?r ? AT32F403A/407 Security Library Application Note

5 Revision history
Table 2. Document revision history
Date Version Revision note
2021.05.21 2.0.0 Initial release.
2021.11.01 2.0.1 Optimized format.
2022.4.13 2.0.2 Modified the configurable range of sLib in the Flash.
D S 5 7] | 1 | I |

2022.4.13 39 Ver 2.0.2

?r ? AT32F403A/407 Security Library Application Note

IMPORTANT NOTICE — PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services, and ARTERY assumes no liability

whatsoever relating to the choice, selection or use of the ARTERY products and services described herein.

No license, express or implied, to any intellectual property rights is granted under this document. If any part of this document deals with any
third party products or services, it shall not be deemed a license grant by ARTERY for the use of such third party products or services, or any
intellectual property contained therein, or considered as a warranty regarding the use in any manner whatsoever of such third party products

or services or any intellectual property contained therein.

Unless otherwise specified in ARTERY’s terms and conditions of sale, ARTERY provides no warranties, express or implied, regarding the
use and/or sale of ARTERY products, including but not limited to any implied warranties of merchantability, fitness for a particular purpose
(and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right.

Purchasers hereby agrees that ARTERY’s products are not designed or authorized for use in: (A) any application with special requirements
of safety such as life support and active implantable device, or system with functional safety requirements; (B) any air craft application; (C)
any automotive application or environment; (D) any space application or environment, and/or (E) any weapon application. Purchasers’
unauthorized use of them in the aforementioned applications, even if with a written notice, is solely at purchasers’ risk, and is solely

responsible for meeting all legal and regulatory requirement in such use.

Resale of ARTERY products with provisions different from the statements and/or technical features stated in this document shall
immediately void any warranty grant by ARTERY for ARTERY products or services described herein and shall not create or expand in any

manner whatsoever, any liability of ARTERY.

© 2021 Artery Technology -All rights reserved

2022.4.13 40 Ver 2.0.2

	1 Overview
	2 Application principles
	2.1 Application principle of sLib
	2.2 How to enable sLib protection
	2.3 How to disable sLib protection
	2.4 Compile and execute program in sLib
	2.4.1 Setting interrupt vector table as security library not allowed
	2.4.2 Correlation between sLib area and user code area

	3 Example applications of sLib
	3.1 Example application requirements
	3.1.1 Hardware requirements
	3.1.2 Software requirements

	3.2 Overview
	3.3 SLIB protected code: FIR low-pass filter
	3.4 Project_L0: example for solution providers
	3.4.1 Generate execute-only code
	3.4.2 Compile security library address
	3.4.3 Enable sLib protection
	3.4.4 Project_L0 execution process
	3.4.5 Generate header file and symbol definition file

	3.5 Project_L1: example for end users
	3.5.1 Create user application project
	3.5.2 Add symbol definition file to project
	3.5.3 Call functions in SLIB-protected area
	3.5.4 Project_L1 execution process
	3.5.5 SLIB protection in debug mode

	4 Integrate codes and download
	4.1 Program codes separately
	4.2 Integrate and program codes

	5 Revision history

