13U - < AT32 SPIM Application Note

ANO0042
Application Note

AT32 SPIM Application Note

Introduction

This application note introduces how to use AT32 MCU SPIM to expand the external memory.

Applicable products:

AT32F403 series
AT32F403A series
Part number AT32F407 series

AT32F413 series
AT32A403A series

]
2022.01.19 1 Ver 2.0.0

?I' ? AT32 SPIM Application Note
Contents

1 OVEIVIBW ...ttt e e e e e et e et r e e e e e e e e e et aaaeeaaeees 5

2 SPIM configuIrationooiiiiiiiiiiiiiiiiiiii ettt eeeeeeeeees 6

2.1 Initialization and unloCK OPEratioN............oiiiiiiiiiiiiiiii e 6

2.2 Flash model SEIECHON..........uuuiiiiiiiiiiii s 6

2.3 REA OPEIatIONot 7

P S ol (oTe] ¢=TaaTaq T aTo o] o =T = 1110] o ISP 7

P T = = LT o] 01T = 11T o SR 7

2.8 ENCIYPLION Lottt 7

2.7 HardwWare CIFCUILuuuieiiiiiiiiiii s 8

2.8 Multiplexed function 1/OSs (IOMUX)uuuuumimmmmmiiiiiiiiiiiiii s 9

3 [11 3 o PSP 10

3.1 User program accesSes SPIMooiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee ettt 10

3.2 Download user program to SPIM or execute user program in SPIM 10

4 ReVISION hiStOrY ... s 13

2022.01.19 B - 2 - = Ver2.00

AR AT32 SPIM Application Note

List of tables
Table 1. Instruction sets supported by SPIMcooiiiiii i e 6
Table 2. Document reVvisSion NiSTOrY..........oieiiiiiiie e e e e e e e nanes 13

2022.01.19 3 Ver 2.0.0

?F ? AT32 SPIM Application Note

List of figures

Figure 1. SPIM scrambled KEY Storage addreSS........ccuuiieiiiiiieiiiiee e ciieee e sitee e sseee e s sneee e e ennnae e e e 8
Figure 2. SPIM addreSSs FANGE.......ccciiiuiieie i ettt e e sitee e e e stee e e s s e e e snte e e e anteeeesnntaeeessnnaeeeesnraneeennnens 8
Figure 3. REfErENCE CIrCUIL.......coiuiiiii e 9
Figure 4. Shared pins of XMC and SPIMcooo i 9
Figure 5. XMC_NADV diSALIEAooiiiiiiieiiiie ettt s e s e e e 9
Figure 6. Configure SPIM FIash MOdelcoo e 10
Figure 7. Configure SPIM start address and SiZe€..........ccccuuuiiiiiei i 11
Figure 8. Configure codes to run in the first part of SPIM..........ccciii i 11
Figure 9. Tick to automatically generate SCt. filecooveieiiiiii e 12
Figure 10. Automatically generated SCt. file..........coovviiiiiiiii e 12

2022.01.19 4 Ver 2.0.0

<[

B AT32 SPIM Application Note

2022.01.19

Overview

The SPIM (External SPI FLASH memory interface), with the maximum address field of 0x08400000
- OX093FFFFF (16MB), is a unique Flash access method of AT32 MCUs, which supports user's
Flash to be used as an external memory of AT32 MCUs. Different from on-chip Bank1/Bank2,
users can enable or disable SPIM as needed. Once enabled, SPIM supports Flash expansion to
realize the following functions:

® Store user program at the SPIM address, similar to Bank1l/Bank2;

® User program directly accesses the SPIM address, which is used as a memory storing font
library and images.

5 Ver 2.0.0

AT32 SPIM Application Note

2 SPIM configuration

SPIM is operated by words (32 bits) or half-words (16 bits) only. It should be initialized ad unlocked

before being read, programmed and erased.

For different AT32 MCU series and packages, pins used by SPIM are different. For details, please

refer to the corresponding reference manual and datasheet. In this application note, the

AT32F403A series is used as an example for demonstration.

2.1 Initialization and unlock operation

The initialization and unlock procedures are encapsulated as library functions in AT32 BSP, which

can be directly called by users.

1)
2)
3)
4)
5)

6)

Enable GPIOA, GPIOB and IOMUX CRM clock;

Configure the corresponding PA8, PA11, PA12, PB1, PB6 and PB7 as push-pull output;
Enable the SPIM interface in the IOMUX_REMAP?2 register;

Configure the FLASH_SELECT register and select the SPIM Flash type;

Use KEY to unlock SPIM: write values (0x45670123 and OXCDEF89AB, respectively) to the
FLASH_UNLOCKS register;

Check whether the SPIM is unlocked successfully; read the OPLK bit in the FLASH_CTRL3
register: if this bit is cleared, SPIM is ready for operation.

2.2 Flash model selection

SPIM can be configured to support different models of spi Flash, and the supported instruction sets

are listed in Table 1. For more details, please refer to the FLASH section in reference manual.

Table 1. Instruction sets supported by SPIM

FLASH_SELECT

Instruction Instruction code Notes

register configuration

Write Enable 0x06 0x1/0x2 Both models of Flash support 0x06 instruction
Quad Page Program 0x32 0x1/0x2 Both models of Flash support 0x32 instruction
Sector Erase 0x20 0x1/0x2 Both models of Flash support 0x20 instruction
Chip Erase 0xC7 0x1/0x2 Both models of Flash support OxC7 instruction
Read Status))
] 0x05 0x1/0x2 Both models of Flash support 0x05 instruction
Register
Both models of Flash support OXEB instruction
Quad /0 Read OxEB 0x1/0x2)
24bit Addr + 6 x Dummy cycles
Volatile status When these three instructions are used for model 1
Register write 0x50 Flash selection, the hardware automatically sends
enable an instruction to configure the Quad Enable (QE bit)
Write Status in the Status Register.
) 0x01 Ox1
Register-1
Model 1 Flash supports:
Write Status
] 0x31 0x50 and 0x01,
Register-2
or 0x50 and 0x31
2022.01.19 6 Ver 2.0.0

AT32 SPIM Application Note

2.3

2.4

2.5

2.6

2022.01.19

Read operation

The address field (0x08400000 — Ox093FFFFF) is directly accessed by words (32 bits) or half-
words (16 bits).

Programming operation

Programming procedures are encapsulated as library function in AT32 BSP, which can be called by
users directly.

1) Enable programming and set FPRGM=1 in the FLASH_CTRL3 register;
2) Write values to the address to be programmed by words (32 bits) or half-words (16 bits);

3) Check whether the OBF bit in the FLASH_STS3 register is cleared; if it is cleared, the write
operation is completed;

4) Disable programming and set FPRGM=0 in the FLASH_CTRLS register;
5) Check the PRGMERR and EPPERR bits in the FLASH_STS3 register; if both bits are set to 0,
the write operation is completed successfully.

Erase operation

SPIM erase operations include Mass Erase and Sector Erase (each sector is 4 KB). Erase
procedures are encapsulated as library function in AT32 BSP, which can be called by users
directly.

Mass Erase

1) Enable mass erase by setting CHPERS=1 in the FLASH_CTRL3 register;

2) Start mass erase by setting ERSTR=1 in the FLASH_CTRL3 register;

3) Disable mass erase by setting CHPERS=0 in the FLASH_CTRL3 register.

Sector Erase

1) Enable sector erase by setting SECERS=1 in the FLASH_CTRL3 register;

2) Select and write the sector address to be erased to the FLASH_ADDRS3 register;

3) Start sector erase by setting ERSTR=1 in the FLASH_CTRL3 register;

4) Disable sector erase by setting SECERS=0 in the FLASH_CTRL3 register.

Encryption

The SPIM circuit is exposed outside the MCU chip. In order to protect data in SPIM Flash being
read directly, SPIM is designed with encryption function so that the original data can be encrypted
by specific algorithm before being written to the Flash. When AT32 MCU reads data from SPIM, it
performs decryption to obtain the original data to ensure data security. The “SPIM scrambled KEY”
used by encryption algorithm is the data within Ox1FFFF820-0x1FFFF82F in user system data
area.

® When “SPIM scrambled KEY” values are all OXFFFFFFFF, the encryption function is disabled.

® When “SPIM scrambled KEY” values are not all OxFFFFFFFF, the encryption function is
enabled. AT32 MCU delimits the encryption range according to the values in the FLASH_DA
register (data within the address field less than 0x08400000+FLASH_DA is ciphertext; other
data is plaintext).

7 Ver 2.0.0

[

Note: The data encryption status in write operation must be the same as that in read operation; otherwise, the
data may be read as messy codes and cannot be used or executed properly. That is, if SPIM scrambled KEY
and FLASH_DA are configured when writing the data, the SPIM scrambled KEY and FLASH_DA must be
configured as the same when reading the data.

AT32 SPIM Application Note

Figure 1. SPIM scrambled KEY storage address

Ox1FFF_F820 NBANK3KEY1 BANK3KEY1 NBANK3KEYO BANK3KEYO
Ox1FFF_F824 NBANK3KEY3 BANK3KEY3 NBANK3KEY2 BANK3KEY2
Ox1FFF_F828 NBANK3KEY5 BANK3KEY5 NBANK3KEY4 BANK3KEY4
Ox1FFF_F&2C nBANK3KEY7 BANK3KEY7 nBANK3KEY6 BANK3KEY6

Figure 2. SPIM address range

0x0840_0000

Access to
ciphertext
0x0840_0000
+ FLASH_DA
Access to
plaintext

O0x093F_FFFF

2.7 Hardware circuit

Since the SPIM is connected to an external circuit and is greatly affected by the environment, the
PCB wiring length should be minimized to ensure circuit stability.

Note: The frequency is 1/2 of the MCU AHB clock frequency. When the SPIM is enabled, the frequency is
limited by the corresponding MCU AHB clock. For details about the maximum frequency with the SPIM
enabled, please refer to the general operating conditions in the datasheet of the corresponding MCU.

2022.01.19 8 Ver 2.0.0

<[

B AT32 SPIM Application Note

2.8

2022.01.19

VDD

R2
1K

vce
HOLD#DQ3
CLK

DI/DQO

o (O

SPIM_103
SPIM_SCK

SPIM_100

[ecl N

Figure 3. Reference circuit
VDD
R1
10K
SPIM_CS ; cs#
SPIM_IO1 ~— pobat
VSS
GND

Multiplexed function 1/Os (IOMUX)

Pay attention to the multiplexed function 1/Os with other IPs when the SPIM is used.

If the 10 used by SPIM is also enabled for other IPs, even if this IO is not used in application, it may

be occupied.

For example, when XMC and SPIM are used at the same time, PB7 serves as 102 of SPIM on
AT32F403A; if XMC is enabled, even if the XMC_NADYV is not enabled, PB7 will be enabled and
occupied by XMC_NADV by default, resulting in abnormal operation of SPIM. In this case,
configure the IOMUX_REMAP?2 register manually and disable the XMC_NADV by calling the

following library function:

gpio_pin_remap_config (XMC_NADV_MUX, TRUE)

Figure 4. Shared pins of XMC and SPIM

PR7 I2C1_SDA/ XMC_NADV / USART1_RX/
SPIM_IO2 / TMR4_CH2™ SPl4_SCK/1284_CK
Figure 5. XMC_NADYV disabled
Bit 10 XMC_NADV_MUX 0x0 rw XMC_NADV_MUX: XMC NADV connection.

This bit is used to choose whether to use
XMC_NADYV signal.
0: XMC_NADV is connected to pin. (default)

1: XMC_NADYV is unused, and the corresponding
pin can be used by other peripherals.

Ver 2.0.0

REE AT32 SPIM Application Note

3.1

3.2

Demo

In this application note, the operate_spim and run_in_spim in AT32 BSP are used to demonstrate
how to use SPIM.

User program accesses SPIM

Once the SPIM is initialized and unlocked, the user program can execute read, programming and
erase operation. The examples\flash\operate_spim in BSP executes SPIM initialization, erase,
programming and read operations, and the result is shown on LED.

Download user program to SPIM or execute user program in
SPIM

If the user program is downloaded to SPIM through Keil or execute the user program in SPIM,
some additional operations are required.

The accessory project “run_in_spim” demonstrates how the code runs on SPIM by LED flashing
status.

1) Click Options-Debug-Settings-Flash Download, and select the external Flash model;

Figure 6. Configure SPIM Flash model

CMSIS-DAP Cortex-M Target Driver Setup =
Debug] Trace Flazh Download]
Download Function RAM for Algorthm
LUAD (" Erase Ful Chip ¥ Program
Fi (+ Frase Sectors | Verify Start: | k20000000 Size: | 00001000
" Donct Erase | Resetand Run
Programming Algorithm
Description | Device Size Device Type Address Range
AT32F403A Int Fash(Bank1,2) ™ On-chip Flash 08000000H - 0BOFFFFFH
AT32F403A Type 2 REMAP_1 B F... 16M Ext. Flash 5P| 08400000H - 093FFFFFH
r L B
4 E Add Flash Programming Algorithm &J
Description | Flash Size | Device Type | Crigin -
D AT32F403A Int.Flash(Bank1,2) M On-chip Flash Device Family Package
AT3IZF403A Type 1 REMAP... 16M Ext. Flash SPI Device Family Package L
AT3IZF403A Type 1 REMAP . 16M Ext. Flash SPI Device Family Package 3
ATIZFA03A Type 2 REMAP . 16M BExt. Flash SPI Device Family Package
AT3IZF403A Type 2 REMAP . 16M BExt. Flash SPI Device Family Package b
AT32F403A Fash user syste.. 488 On-chip Flash Device Family Package

2) Click Options-Target to add the SPIM start address and size (do not tick); in this Demo, the
SPIM is defined at IROM2 to store C files.

Note: If the SPIM start address and size are ticked, KEIL may compile unnecessary functions to the SPIM

address field.
2022.01.19 - - 10 - = Ver2.0.0

,’I?l' ?Y AT32 SPIM Application Note

Figure 7. Configure SPIM start address and size

-
Options for Target "run_in_spim' E

Dewice Target IDutputI Listingl User I C/CH I HAsm I Linker I Debug I Utilitiesl

AeryTek -ATI2F403AVGTT rCode Ge”e'.EﬁOH
ARM Compiler: IUse default compiler version 5 ;I

Yial (MHz): |<undefined>

Operating system: | None d [~ Use Cross-Module Optimization

System Viewer File: [Use MicroLIB [T Big Endian

IATE’ZF“’DE’M—"Z-S"E' J Floating Poirt Hardware: ISingIe Precision ;I

[Use Custom File

— Read/Only Memary Areas — Read/Write Memory Areas

default off-chip Start Size Startup default off-chip Start Size Mo lnit
™ FRoMi: | | c o RAMI: | | r

! T RoM2Z: | | o [RAMZ: | | r
r Rom3: | | s r RAM3: | | r
FrekiE on-chip

| iRomi. |(xB000000 [0<100000 g W IRAM1: [(x20000000 633000 r
[IROMZ |m34mmn |m1mum C [IRAMZ: | | [

1):4 I Cancel | TDefaults | Help |

3) Click Project and select C files to run in SPIM; right click Options to modify the code address in
Memory Assignment to the corresponding address field.

Note: If the function in project requires compilation with specified address fields, add the address to the
corresponding ROM1/2/3 or modify sct. files manually.

Figure 8. Configure codes to run in the first part of SPIM

=% Project: run_in_spim
Bl 45 run_in_spim
B user
L] at32M403a 407_clock.c
1] at32M032.407 intc

1 maink 4K Options for File ‘un_in_spim.c...

Remove File ‘run_in_spim.c
fi Options for File 'run_in_
=0 ‘rmYNErE Manage Project ftems... Pt
[cmsis
0 e | CPETTULIR DTG Properties |c/cH |
[#H Rebuild all target files
(%] Build Target 7
File Type: | C Source file - 1
Translate run_in_spim.c
-n-e Siaes [1839 Bytes [
Show Indude File Dependencies Jast change I—Wed Pug 4 17:46:55 2021 Mt
c]
Stop on Exit Code: [Nt specfied =l &
Custom Argumerts: |
Memory Assignment

| Code / Const: |/ROM2 [(xB400000-2«84FFFFF] -

| ———————— |

ZeT TSI OS] -
Other Data: |<defauit> =
Layer: |<not assigned> hd

4) Tick to automatically generate sct. file. After the compilation is complete, browse the sct. file,
and it can be found that functions to run in SPIM have been compiled to the corresponding
area correctly.

2022.01.19 1" Ver 2.0.0

,’I?I' ? AT32 SPIM Application Note

Figure 9. Tick to automatically generate sct. file

F k|
Options for Target 'run_in_spim'’ ﬂ

Device | Target| Output| Listing| Vser | r/C++ |ham Linker |Dabug | Utilities|
¥ Use Memory Layout from Target Dialog ¥/O Base: I

[~ Make RW Sections Position Independent
[~ Make RO Sections Posttion Independant
[~ Dont Search Standand Libraries

¥ Report might fail’ Conditions as Emors

Scatter | \objects\mun_in_spim sct - Edit
Fle | i =[] -

Misc o
cantrols A
Linker |-cpu Cortex-M4 fpsp "o -
contral |-strict —scatter " ‘objects‘run_in_spim sct”
string e

0K | [comcer || Defmues |

Figure 10. Automatically generated sct. file

. #%% Scatter-Loading Description File generated by uVision ##%

LR_IROM1 0=08000000 0x00100000 { . load region size_region
ER_IROM1 0x08000000 0x00100000 { ; load address = execution address
o (RESET, +First)

% (InRoot$5Sections)
.ANY (+R0O)
CANY (+X0)

}
RW_IRAM1 0x20000000 0x00038000 { ; RW data
}.A.\IY (+RW +ZI1)

}
LR_IROMZ2 0x08400000 0x00100000 {
ER_IROM2 0x08400000 0x00100000 { ; load address = execution address
run_in_spim. o (+R0O)
}

Note: The entire code must start from bank1, and the SPIM flash initialization codes should run before the
program executes in SPIM.

2022.01.19 12 Ver 2.0.0

?F ? AT32 SPIM Application Note

4 Revision history
Table 2. Document revision history
Date Version Revision note
2022.01.19 2.0.0 Initial release.

2022.01.19 13 Ver 2.0.0

<[

B AT32 SPIM Application Note

2022.01.19

IMPORTANT NOTICE — PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services; ARTERY assumes no liability for

purchasers’ selection or use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous
representation in any forms. If any part of this document involves third party’s products or services, it does NOT imply that ARTERY
authorizes the use of the third party’s products or services, or permits any of the intellectual property, or guarantees any uses of the third

party’s products or services or intellectual property in any way.

Except as provided in ARTERY’s terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty,
relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a
particular purpose (based on the corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other

intellectual property right.

ARTERY'’s products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have
specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements
on product function safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other
applications that may cause injuries, deaths or property damages. Since ARTERY products are not intended for the above-mentioned
purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks
caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with

all statutory and regulatory requirements regarding these uses.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will
immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and
ARTERY disclaims any responsibility in any form.

© 2022 ARTERY Technology -All Rights Reserved

14 Ver 2.0.0

	1 Overview
	2 SPIM configuration
	2.1 Initialization and unlock operation
	2.2 Flash model selection
	2.3 Read operation
	2.4 Programming operation
	2.5 Erase operation
	2.6 Encryption
	2.7 Hardware circuit
	2.8 Multiplexed function I/Os (IOMUX)

	3 Demo
	3.1 User program accesses SPIM
	3.2 Download user program to SPIM or execute user program in SPIM

	4 Revision history

