
AT32F421 Security Library Application Note

2023.03.21 1 Ver 2.0.1

AN0071

Application Note

AT32F421 Security Library Application Note

Introduction
This application note introduces the security library (sLib) application principle of AT32F421 MCUs,
operation methods and example projects.

Applicable products:

Part number AT32F421

AT32F421 Security Library Application Note

2023.03.21 2 Ver 2.0.1

Contents

1 Overview ... 7

2 Application principles ... 8

2.1 Application principle of sLib.. 8

2.2 How to enable sLib protection.. 9

2.3 How to disable sLib protection ... 10

2.4 Compile and execute program in sLib... 11

2.4.1 Setting interrupt vector table as sLib instruction area not allowed........................... 12

2.4.2 Correlation between sLib area and user code area .. 12

2.4.3 Use and compile software floating-point arithmetic library 14

3 Example applications of sLib .. 16

3.1 Example application requirements .. 16

3.1.1 Hardwar requirements ... 16

3.1.2 Software requirements ... 16

3.2 Overview .. 16

3.3 SLIB protected code: FIR low-pass filter... 17

3.4 Project_L0: example for solution providers .. 18

3.4.1 Generate execute-only code .. 18

3.4.2 Compile security library address .. 20

3.4.3 Enable sLib protection ... 24

3.4.4 Project_L0 execution process .. 25

3.4.5 Generate header file and symbol definition file ... 27

3.5 Project_L1: example for end users .. 28

3.5.1 Create user application project... 29

3.5.2 Add symbol definition file to project .. 30

3.5.3 Call functions in SLIB-protected area ... 31

3.5.4 Project_L1 execution process .. 31

3.5.5 SLIB protection in debug mode .. 32

4 Integrate codes and download .. 35

4.1 Program codes separately ... 35

AT32F421 Security Library Application Note

2023.03.21 3 Ver 2.0.1

4.2 Integrate and program codes ... 38

5 Revision history .. 41

AT32F421 Security Library Application Note

2023.03.21 4 Ver 2.0.1

List of tables

Table 1. Flash size of AT32F421 MCUs .. 9

Table 2. Document revision history ... 41

AT32F421 Security Library Application Note

2023.03.21 5 Ver 2.0.1

List of figures

Figure 1. Mapping of main Flash memory featured with sLib... 9

Figure 2. Literal pool example (1) ..11

Figure 3. Literal pool example (2) ... 12

Figure 4. Example of function in sLib area calling the function in user code area 13

Figure 5. Example of user-defined function ... 14

Figure 6. Assembly codes in division functions ... 14

Figure 7. Example application process.. 16

Figure 8. Example application... 17

Figure 9. FIR low-pass filter .. 17

Figure 10. Enter Option interface in Keil.. 18

Figure 11. Tick Execute-only Code in Keil ... 19

Figure 12. Enter Option interface in IAR.. 19

Figure 13. Set C/C++ options in IAR ... 20

Figure 14. Main Flash memory mapping and RAM partition .. 20

Figure 15. Set Linker option in Keil ... 21

Figure 16. Modify scatter in Keil .. 22

Figure 17. Modify SLIB RAM address in Keil... 22

Figure 18. Modify SLIB constant address in KEIL ... 22

Figure 19. SLIB address definition in icf file... 23

Figure 20. Address assignment in icf file ... 23

Figure 21. Modify SLIB used RAM in icf file .. 23

Figure 22. Modify SLIB read-only area in icf file .. 24

Figure 23. Configure ICP Programmer .. 24

Figure 24. Set parameters in Download Form ... 25

Figure 25. Project_L0 execution process .. 26

Figure 26. Set Misc controls in Keil ... 27

Figure 27. Contents of modified fir_filter_symbol.txt .. 27

Figure 28. Set Build Actions in IAR ... 28

Figure 29. Edit steering_file.txt contents ... 28

Figure 30. Modified scatter file .. 29

Figure 31. Modified icf file ... 29

Figure 32. Add symbol definition file in Keil ... 30

Figure 33. Modify symbol definition file type to “Object file” ... 30

Figure 34. Add symbol definition file in IAR ... 31

AT32F421 Security Library Application Note

2023.03.21 6 Ver 2.0.1

Figure 35. Project_L1 execution process .. 32

Figure 36. Enter Show Disassembly at Address.. 33

Figure 37. Set Show Code at Address .. 33

Figure 38. View codes .. 33

Figure 39. View codes in Memory ... 34

Figure 40. SLIB_READ_ONLY start sector in Memory .. 34

Figure 41. SLIB write test.. 34

Figure 42. Write protection error interrupt ... 34

Figure 43. Save SLIB codes ... 35

Figure 44. Generate .bin file of SLIB code .. 36

Figure 45. Online programming to MCU in ICP ... 36

Figure 46. Offline programming to MCU via AT-Link .. 37

Figure 47. End users program codes to MCU ... 38

Figure 48. Set offline project ... 39

Figure 49. Add project file ... 40

AT32F421 Security Library Application Note

2023.03.21 7 Ver 2.0.1

1 Overview

As more and more MCU applications require complex algorithms and middleware solutions, it has

become an important issue that how to protect IP-Codes (such as core algorithms) developed by

software solution providers.

The AT32F421 series MCUs are designed with a security library (sLib) to protect important IP-

Codes against being changed or read by the end user’s program.

This application note details the sLib application principle and operation methods of AT32F4 21

MCUs.

AT32F421 Security Library Application Note

2023.03.21 8 Ver 2.0.1

2 Application principles

2.1 Application principle of sLib

 Security library is a defined area protected by a code in the main memory, so that solution

providers can program core algorithm into this area, and the rest of the area can be used for

secondary development by end customers.

 Security library contains data security library (SLIB_READ_ONLY) and instruction security

library (SLIB_INSTRUCTION); users can set part of or the whole security library as

SLIB_READ_ONLY or SLIB_INSTRUCTION.

 Data in the SLIB_READ_ONLY area can only be read through I-Code and D-Code and cannot

be programmed.

 Program code in the instruction security library (SLIB_INSTRUCTION) can only be fetched

(can only be executed) by MCU through I-Code bus and cannot be read through D-Code bus

(including ISP/ICP/debug mode and programs that boot from internal RAM). When reading the

SLIB_INSTRUCTION area, values are all read 0xFF or 0x00.

 The program code and data in security library cannot be erased unless the correct code is

keyed in. If a wrong code is keyed in, in an attempt of writing or erasing the security library, a

warning message will be issued by EPPERR=1 in the FLASH_STS register.

 The program code and data in security library are not erased when the end users perform a

mass erase on the main Flash memory.

 Users can write the previously programmed password in the SLIB_PWD_CLR register to

disable security library protection. When the security library protection is disabled, the chip will

perform a mass erase on the main Flash memory (including the contents of security library).

Therefore, even if the code defined by the software solution provider is leaked, the program

code will not be leaked.

The mapping of main Flash memory featured with sLib is shown in Figure 1. The program codes in

security library can be easily called and executed by end users, but cannot be read directly.

AT32F421 Security Library Application Note

2023.03.21 9 Ver 2.0.1

Figure 1. Mapping of main Flash memory featured with sLib

USER CODE

SLIB_READ_ONLY

SLIB_INSTRUCTION

User_Code_Start@

User_Code_End@

SLIB_Start@

SLIB_End@

The range of sLib is set by sector, and the size of each sector is subject to the specific MCUs.

Table 1 lists the main Flash size, sector size and configurable range of AT32F421 series MCUs.

In addition, once the boot memory is programmed as memory extension area, the entire 4 KB area

can be used as security library.

Table 1. Flash size of AT32F421 MCUs

Model Internal Flash size (Byte) Sector size (Byte) Configurable range

AT32F421x4 16K 1K
Sector 0 ~ 15(1)

(0x08000000 ~ 0x08003FFF)

AT32F421x6 32K 1K
Sector 0 ~ 31(1)

(0x08000000 ~ 0x08007FFF)

AT32F421x8 64K 1K
Sector 0 ~ 63(1)

(0x08000000 ~ 0x0800FFFF)

(1) Sector 0 cannot be configured as the instruction security library.

2.2 How to enable sLib protection

By default, security library setting register is unreadable and write-protected. To enable write

access to this register, security library should be unlocked first by writing 0xA35F6D24 to the

SLIB_UNLOCK register. Then check the SLIB_ULKF bit in the SLIB_MISC_STS register to verify if

it is unlocked successfully. If successful, write the programmed value into the security library setting

register.

The steps to enable security library are as follows:

AT32F421 Security Library Application Note

2023.03.21 10 Ver 2.0.1

 Check the OBF bit in the FLASH_STS register to confirm that there is no other ongoing

programming operation;

 Write 0xA35F6D24 to the SLIB_UNLOCK register to unlock security library;

 Check the SLIB_ULKF bit in the SLIB_MISC_STS register to verify if it is unlocked

successfully;

 Set the sectors to be protected in the SLIB_SET_RANGE register, including the SILB start/end

addresses and the start address of instruction security library;

 Wait until the OBF bit becomes “0”;

 Set a security library password in the SLIB_SET_PWD register;

 Wait until the OBF bit becomes “0”;

 Program the code to be saved in security library;

 Perform a system reset, and then reload the security library setting words;

 Read the SLIB_STS0/STS1 register to verify the security library settings.

Note:

 It is allowed to set security library in the main Flash memory and its extension area; refer to

Table 1 for the configuration range;

 The security library code must be programmed by sectors, with its start address aligned with

the address of main Flash memory or its extension area;

 The interrupt vector table is in data type and usually placed in the first sector (sector0, which

should not be configured as security library instruction area) of the main Flash memory .

For details about security library setting register, refer to AT32F421 Series Reference Manual.

The security library can be enabled by the slib_enable() function in main.c file of project_l0. In

addition, users can use Artery ICP or ISP tools for configuration.

2.3 How to disable sLib protection

The security library protection can be disabled by writing the previously programmed password to

the SLIB_PWD_CLR register. While disabling security library protection, MCU will perform mass

erase operation to the main Flash memory (including the contents of security library).

The steps to disable main Flash security library are as follows:

 Check the OBF bit in the FLASH_STS register to ensure that there is no other ongoing

programming operation;

 Write the previously programmed password to the SLIB_PWD_CLR register;

 Perform a system reset, and then reload security library setting words;

 Read the SLIB_STS0 register to verify the security library settings.

AT32F421 Security Library Application Note

2023.03.21 11 Ver 2.0.1

2.4 Compile and execute program in sLib

As aforementioned, program codes in the instruction security library (SLIB_INSTRUCTION) can be

fetched by MCU via I-Code bus but cannot be read via D-Code bus, which means that program

codes in SLIB_INSTRUCTION cannot read the data saved in the same SLIB_INSTRUCTION. For

example, literal pool, branch table or constant compiled from C program code in the

SLIB_INSTRUCTION cannot be read via D-Code bus.

Only instructions rather than data can be placed in the instruction security library. Therefore, when

compiling program codes to be placed in the instruction security library, the user must configure the

compiler to generate execute-only codes to avoid generating the above mentioned data.

Figure 2 and Figure 3 show the examples of literal pool and branch table.

The “switch()” is a jump instruction in C program, and the “sclk_source” variable is used to read the

CRM_CFG register. As shown in Figure 2, the compiled assembly code “LDR R7, [PC, #288]”

obtains the address of the CRM_CFG register in a PC (program counter) indirect addressing

manner, and the address of the CRM_CFG register is saved as a constant in the adjacent

instruction area (within the instruction security library); therefore, the data is read when the

“switch()” instruction is executed. An error will occur if there is such program code in the instruction

security library.

The example program in Section 3 introduces how to configure compiler settings to avoid error.

Figure 2. Literal pool example (1)

AT32F421 Security Library Application Note

2023.03.21 12 Ver 2.0.1

Figure 3. Literal pool example (2)

2.4.1 Setting interrupt vector table as sLib instruction area not

allowed

The interrupt vector table contains entry point address of each interrupt handler, which is read by

MCU via D-Code bus. Generally, the interrupt vector table is located in the first sector (sector0,

starting address: 0x08000000). Therefore, the following rules must be followed when setting the

instruction security library:

 Do not configure the first sector of the main Flash memory as sLib instruction area.

2.4.2 Correlation between sLib area and user code area

Program code (IP-code) protected by sLib area can call functions from the function library located

in user code area (outside the sLib area). In this case, these function addresses are contained in

the IP-Code, allowing PC (program counter) to jump to these functions when IP-Code is executed.

Once the sLib area is enabled, function address cannot be changed. At this point, addresses of

functions in the user code area must be fixed; otherwise, PC will jump to a wrong address and

cannot work properly. Therefore, when configuring the sLib area, all functions related to IP-Code

should be compiled into the sLib area. Figure 4 gives an example of the protected Function_A()

being called to Function_B() in the user code area.

AT32F421 Security Library Application Note

2023.03.21 13 Ver 2.0.1

Figure 4. Example of function in sLib area calling the function in user code area

In addition, the standard function library of C programming language is commonly used, such as

memset() and memcpy() functions. If both IP-Code and user area code call such functions, the

above mentioned error may occur.

Recommended solutions:

1) Compile into the sLib area (refer to Keil or IAR documents for details).

2) Do not use the standard function library of C programming language in IP-Code. If it is

necessary to use in IP-Code, functions to be used must be renamed. Figure 5 shows an

example of writing the my_memset() function to replace the original memset() in IP-Code

Function_B()
{

 ;

 ;
{

Function_A()
{

 .;
Function_B();

 ;
}

User_Code_Start@

User_Code_End@
SLIB_Start@

SLIB_End@

User code area

SLIB area

Function B fixed@

AT32F421 Security Library Application Note

2023.03.21 14 Ver 2.0.1

Figure 5. Example of user-defined function

2.4.3 Use and compile software floating-point arithmetic library

Since the AT32F421 series does not have a hardware floating point unit (FPU), the Keil or IAR

compiler will use ARM® software floating-point arithmetic library for floating-point operations. The

software floating-point arithmetic library functions are compiled codes that cannot be modified, and

some of them are in the literal pool format as mentioned before; therefore, these functions cannot

be compiled to the SLIB_CODE but must be placed in the SLIB_READ_ONLY area. As shown in

Figure 6, the division functions in Keil floating-point arithmetic library have assembly codes in literal

pool format.

Figure 6. Assembly codes in division functions

AT32F421 Security Library Application Note

2023.03.21 15 Ver 2.0.1

After the sLib protection is enabled, all contents in the sLib protected area cannot be changed,

including the address of floating-point arithmetic library functions called by SLIB_CODE. Section 3

introduces how to compile the floating-point arithmetic library functions to be used into the

SLIB_READ_ONLY area, so that programs in SLIB_CODE can be called properly after the sLib

protection is enabled.

For details about Keil floating-point arithmetic library, refer to the ARM DUI0378G ARM® Compiler

v5.06 for μVision® ARM C and C++ Libraries and Floating-Point Support User Guide under the

installation directory.

For details about IAR floating-point arithmetic library, refer to the EWARM_DevelopmentGuide IAR

C/C++ Development Guide (PREBUILT RUNTIME LIBRARIES section) under the installation

directory.

AT32F421 Security Library Application Note

2023.03.21 16 Ver 2.0.1

3 Example applications of sLib

This section introduces example applications of sLib and how to complete these applications step

by step.

3.1 Example application requirements

3.1.1 Hardwar requirements

 AT-START-F421 demo board with AT32F421C8T7 chip

 AT-Link emulator for debugging

3.1.2 Software requirements

 Keil® μvision IDE (μvision V5.18.0.0 is used in this example) or IAR Embedded workbench

IDE (IAR V8.22.2 is used in this example)

 Artery ICP or ISP programming tools for enabling and disabling sLib

3.2 Overview

This application note provides two sample projects to demonstrate that software developers

develop IP-Code for end-user applications.

 Project_L0: Solution provider develops algorithm and compiles to sLib

 Project_L1: Apply algorithm by end users

The algorithm completed in Project_L0 will be pre-downloaded and pre-burned to AT32F421 chip

and configured as sLib protected. In addition, the following settings are available for the end-user

applications.

 Main Flash memory mapping, showing the area occupied by sLib and the area where users

can develop programs;

 Header file that contains algorithm function definitions, and end users can call relevant

functions;

 Symbol definition file, which contains the actual address of each IP-Code function, so that

functions can be called properly by the end-user application.

Figure 7. Example application process

Project_L0
Programs SLIB protected code

Project_L1
Programs End User Code

Using SLIB protected functions

End user application

AT32F421 Security Library Application Note

2023.03.21 17 Ver 2.0.1

Software solution providers can refer to the Project_L0 to develop algorithm code and refer to

Project_L1 for end-user application.

Figure 8. Example application

Solution- Provider

Project_l0
End-User

Project_l1

Provide pre burned
IP-CODE AT32F421 chip

Provide AT32F421
chip

3.3 SLIB protected code: FIR low-pass filter

This example uses FIR low-pass filter algorithm provided by CMSIS-DSP library as the sLib

protected IP-Code. For details about FIR low-pass filter algorithm, refer to CMSIS-DSP relevant

documents. This application note mainly introduces how to configure sLib to protect this algorithm

and how it is called by the end-user program code.

The low-pass filter input signal in this example is a combination of two sine waves at frequencies of

1 KHz and 15 KHz, while the low-pass filter cut-off frequency is about 6 KHz. A 15 KHz signal is

filtered through the low-pass filter and outputs 1 KHz sine wave. Figure 9 shows the FIR low-pass

filter functions.

Figure 9. FIR low-pass filter

CMSIS DSP library functions and files to be used are:

 arm_fir_init_f32()

It is used for initialization of filter, which is included in “arm_fir_init_f32.c” file.

 arm_fir_f32()

It is the main part of filter algorithm, which is included in “arm_fir_f32.c” file.

 FIR_lowpass_filter()

It is a FIR low-pass filter global function written by using the above two functions. It is called by the

end user and is included in “fir_filter.c” file.

 fir_coefficient.c

This C file contains coefficients (read-only constants) used by FIR filter functions, and these

coefficients are placed in read-only area in the example.

Since the AT32F421 series does not have an embedded hardware FPU, the floating-point

arithmetic library functions in this example are used for signal processing and floating -point

operations.

FIR Low Pass Filter

Input signal Output signal

AT32F421 Security Library Application Note

2023.03.21 18 Ver 2.0.1

3.4 Project_L0: example for solution providers

The following projects are completed in this level:

 Compile the algorithm-related functions to execute-only code;

 Place the algorithm program code to the main Flash memory sector12 to sector19 (address:

0x08003000 ~ 0x08004FFF);

 Place the filter function coefficients, floating-point arithmetic library and C library used by the

program to the main Flash memory sector4 to sector11 (address: 0x08001000 ~ 0x08002FFF);

 Execute FIR_lowpass_filter() in the main program to verify its correctness;

 If correct, configure sector12 to sector19 as instruction security library and sector4 to sector11

as read-only area, which can be completed by calling slib_enable() function in the main

program or using Artery ICP Programmer (recommended);

 Generate the header file and symbol definition files that are used by end-user program to call

low-pass filter functions.

3.4.1 Generate execute-only code

Each toolchain has specific setting options to prevent the compiler generating literal pools and

branch table that can read data while executing instructions, such as “LDR Rn, [PC, #offset]”.

Section 2.4 lists examples of literal pool and branch table.

For example, Keil® μvision has Execute-only Code option, which can be set as follows:

Keil® μvision: Set Execute-only Code option

Operate as follows:

 Select C file group or individual C file (in this example, the C files to be protected are placed in

“fir_filter”);

 Right click and select the corresponding files (for example, the Option for File ‘arm_fir_f32.c’),

as shown in Figure 10;

Figure 10. Enter Option interface in Keil

 Tick “Execute-only Code” in the C/C++ and the “--execute_only” instruction is added to the

compiler control string, as shown in Figure 11;

AT32F421 Security Library Application Note

2023.03.21 19 Ver 2.0.1

Figure 11. Tick Execute-only Code in Keil

 The arm_fir_f32.c, arm_fir_init_f32.c and fir_filter.c are in the SLIB_INSTRUCTION area, and

these files need to be set as generating execute-only code.

IAR: Set No data read in code memory option

Operate as follows:

 Select the corresponding file in the fir_filter group; right click and select Option;

Figure 12. Enter Option interface in IAR

 Enter "C/C++" interface and tick “Override inherited settings” and “No data read in code

memory”, as shown in Figure 13;

AT32F421 Security Library Application Note

2023.03.21 20 Ver 2.0.1

Figure 13. Set C/C++ options in IAR

 The arm_fir_f32.c, arm_fir_init_f32.c and fir_filter.c are in the SLIB_INSTRUCTION area, and

these files need to be configured as generating execute-only code.

3.4.2 Compile security library address

As aforementioned, the first sector (sector0) of the main Flash memory is used to store interrupt

vector table. Therefore, the security library is set from sector 4 in this example, with sectors 12-19

being set as instruction security library and sector 4-11 being set as read-only area. Figure 14

shows the main Flash memory mapping and RAM partition. The main purpose of RAM partitioning

is to avoid the same RAM being used by sLib-protected code and end user code.

Figure 14. Main Flash memory mapping and RAM partition

0x08000000

0x08000FFF
0x08001000

0x08002FFF
0x08003000

0x08004FFF
0x08005000

0x0800FFFF

Vector table
User code

SLIB_READ_ONLY

SLIB_INSTRUCTION

User code

User RAM

SLIB used RAM

0x20000000

0x20002FFF
0x20003000

0x20003FFF

AT32F421 Security Library Application Note

2023.03.21 21 Ver 2.0.1

Keil® μvision: scatter file

Operate as follows:

 Click Project  Options for TargetLinker , untick “Use memory layout from Target Dialog”

and click “Edit” to open and modify slib-w-xo.sct file, as shown below:

Figure 15. Set Linker option in Keil

 Open scatter file, load the object file of the code to be placed in SLIB_INSTRUCTION area to

“LR_SLIB_INSTRUCTION” (a dedicated loading area that starts from sector 12 and occupies

eight sectors) and modify the label to “execute-only (+XO)”. Place the area occupied by

SLIB_READ_ONLY to a dedicated loading area named “LR_SLIB_READ_ONLY” to avoid the

compiler compiling other non-IP-Code functions to the SLIB area. The RW_IRAM2 assigns the

region from 0x20003000 to 0x20003FFF to the sLib algorithm functions to avoid the same

RAM region being used by end-user project, causing fault or error in program execution

process.

AT32F421 Security Library Application Note

2023.03.21 22 Ver 2.0.1

Figure 16. Modify scatter in Keil

Note: Use *armlib* to compile the floating-point arithmetic library functions and C standard library to

LR_SLIB_READ_ONLY area.

 In addition to modifying the scatter file, for the RAM used by IP-Code, users can also use the

Keil “__attribute__((at(address)))” descriptor to load variables to 0x20003000, as shown in

Figure 17.

Figure 17. Modify SLIB RAM address in Keil

 The start address of read-only area is sector 4 (0x08001000). To compile the constants used

by FIR low-pass filter to this address, users can modify the scatter file as aforementioned, or

use Keil “__attribute__((at(address)))” descriptor to load the constants to a fixed address, as

shown in Figure 18.

Figure 18. Modify SLIB constant address in KEIL

AT32F421 Security Library Application Note

2023.03.21 23 Ver 2.0.1

IAR: ICF file

Operate as follows:

 Open the icf file in “\project_l0\IAR_V8.2\”, and add three new loading areas as shown in

Figure 19. The SLIB_RAM region reserves the corresponding RAM (0x20003000 to

0x20003FFF) for the algorithm functions.

Figure 19. SLIB address definition in icf file

 In the icf file, the area occupied by SLIB is reserved to avoid the compiler compiling other non-

IP-Code functions to the SLIB area, and the RAM region used by IP-Code is reserved.

Figure 20. Address assignment in icf file

 For the RAM used by IP-Code, users can use the IAR @ descriptor to load variables to a fixed

address (0x20003000) or modify the icf file, as shown in Figure 21.

Figure 21. Modify SLIB used RAM in icf file

 The start address of read-only area is sector 4 (0x08001000). To compile the constants,

m7Mx_tl.a (floating-point arithmetic library) and rt7Mx_tl.a (C library) used by FIR low-pass

filter to this address, as shown in Figure 22.

AT32F421 Security Library Application Note

2023.03.21 24 Ver 2.0.1

Figure 22. Modify SLIB read-only area in icf file

3.4.3 Enable sLib protection

There are two methods to enable sLib protection:

(1) Use Artery ICP Programmer (recommended)

It is recommended to use Artery ICP Programmer as follows:

 Connect AT-Link emulator to AT-START-F421 board and then power on;

 Open ICP Programmer, select AT-Link for connection, and add the HEX or BIN file generated

by Project_L0, as shown in Figure 23.

Figure 23. Configure ICP Programmer

AT32F421 Security Library Application Note

2023.03.21 25 Ver 2.0.1

 Click “Download” and the “Download Form” pops up, which shows sLib status and relevant

parameters. Set the start sector, INSTR start sector and end sector; set the enable password

as “0x55665566” (user-defined) and tick “Enable sLib”; then click “Start Download” to complete

programming and enable sLib successfully, as shown in Figure 24.

Figure 24. Set parameters in Download Form

For details about ICP Programmer, refer to ICP Programmer User Manual.

(2) Use slib_enable() in main.c

After the slib_enable() function is verified correct by low-pass filter function and then executed, the

sLib protection can be enabled. To execute this function, enable the “#define

USE_SLIB_FUNCTION” in main.c.

3.4.4 Project_L0 execution process

In this example, FIR low-pass filter calculates the input signal (testInput_f32_1kHz_15kHz) mixed

with 1 KHz and 15 KHz sine waves, and the output 1 KHz sine wave data is saved in testOutput,

which will be compared with the data calculated by MATLAB and saved in refOutput. If the error

value is smaller than expected (SNR larger than the preset threshold), the green LED on the board

blinks; otherwise, the red LED blinks. Figure 25 shows the Project_L0 execution process.

AT32F421 Security Library Application Note

2023.03.21 26 Ver 2.0.1

Figure 25. Project_L0 execution process

Start

LED3 toggle
continuously

User button
Pressed ?

Execute
FIR filter

test

Check
FIR test
result

SLIB
Operate

successfully?

Green LED4 toggle
in infinite loop

Red LED2 toggle
in infinite loop

SLIB
already

enabled?

Green LED4 on
3 seconds

Enable SLIB

Execute
system rest to activate

SLIB

Red LED2
Always On

Yes

No

yes

Success

Yes

Fail

No

No

Go through the following steps to execute this example program:

(1) Use Keil® μvision to open the Project_L0 under

\utilities\AT32F421_slib_demo\project_l0\mdk_v5\, and then compile;

(2) Before downloading the code, check whether the chip on AT-START-F421 board is sLib-

protected or write/read-protected (FAP/EPP). If it is protected, use ICP programmer to disable

protection and then download the code;

(3) After successful download, start to execute the code, and the on-board LED3 keeps blinking

rapidly;

(4) Press the on-board USER button to perform operation of low-pass filter;

(5) Compare the computation result. If it is correct, the green LED4 keeps blinking; otherwise, the

AT32F421 Security Library Application Note

2023.03.21 27 Ver 2.0.1

red LED2 keeps blinking;

(6) After obtaining the correct result, if the USE_SLIB_FUNCTION in main.c is defined and the

SLIB is not enabled, the slib_enable() function will be executed to set SLIB. If SLIB setting

fails, the red LED2 will be always ON; if SLIB setting succeeds, the green LED4 will be ON for

about three seconds and then perform system reset to enable SLIB; then, go to step (3).

3.4.5 Generate header file and symbol definition file

The header file and symbol definition file are used when the Project_L1 calls FIR low-pass filter

functions, which is the fir_filter.h file in main.c in this example.

The generation of symbol definition file is related to the specific toolchain being used.

Use Keil® μvision to generate symbol definition file

Operate as follows:

 Enter Options for Target  Linker interface;

 Add “--symdefs=fir_filter_symbol.txt” command in the “Misc controls”, as shown in Figure 26;

Figure 26. Set Misc controls in Keil

 After compiling the project, a symbol definition file named “ fir_filter_symbol.txt” is generated

under “project_l0\mdk_v5\Objects”;

 This symbol definition file contains all symbol definitions of the project, and it needs to be

modified to only remain the definitions of low-pass filter functions to be called by end users.

The modified fir_filter_symbol.txt is shown in Figure 27;

Figure 27. Contents of modified fir_filter_symbol.txt

AT32F421 Security Library Application Note

2023.03.21 28 Ver 2.0.1

Use IAR to generate symbol definition file

Operate as follows:

 Select ProjectOptionBuild Actions

Figure 28. Set Build Actions in IAR

 Input the following commands to the Post-build command line:

$TOOLKIT_DIR$\bin\isymexport.exe --edit "$PROJ_DIR$\steering_file.txt"

"$TARGET_PATH$" "$PROJ_DIR$\fir_filter_symbol.o"

 The fir_filter_symbol.o is the symbol definition file to be generated, and the steering_file.txt is

saved under “project_l0\iar_v8.2”, which is used to select function symbols to be generated.

Users can manually edit the contents called by sLib. As shown in Figure 29, the "show" is the

command used to select functions.

Figure 29. Edit steering_file.txt contents

3.5 Project_L1: example for end users

Project_L1 uses the FIR low-pass filter function that is debugged in Project_L0, programmed to

AT32F421 MCU main Flash memory and SLIB-protected. According to the header file, symbol

definition file and the main Flash memory mapping of Project_L0, end users can complete the

followings for Project_L1:

 Create an application project;

 Add the header file and symbol definition file provided by Project_L0 to the project;

AT32F421 Security Library Application Note

2023.03.21 29 Ver 2.0.1

 Call the FIR low-pass filter function;

 Develop and debug user’s program.

Note:

Project_L1 must use the same toolchain and the same version of the compiler as those of

Project_L0; otherwise, incompatibility problem may occur and the code provided by Project_L0

cannot be used properly. For example, Project_L0 uses Keil® μvision V5.18.0.0; therefore,

Project_L1 need to use the same version.

3.5.1 Create user application project

The security library enabled in Project_L0 occupies some specific main Flash memory sectors;

therefore, the address for Project_L1 code storage should be compiled according to the main Flash

memory mapping of Project_L0. In the main Flash memory, sector 4 to sector 19 are occupied by

security library, which should be isolated by using the linker control file to avoid code being

compiled to this region.

Keil® μvision: scatter file

Refer to the end_user_code.sct under “project_l1\mdk_v5\”, and divide the main Flash memory into

two regions, and the middle part is the SLIB-protected area. In addition, the region behind

0x20003000 in the RAM should be reserved, as shown in Figure 30.

Figure 30. Modified scatter file

IAR: ICF file

Refer to the enduser.icf under “project_l1\iar_V8.2\”, as shown in Figure 31.

Figure 31. Modified icf file

AT32F421 Security Library Application Note

2023.03.21 30 Ver 2.0.1

3.5.2 Add symbol definition file to project

The symbol definition file fir_filter_symbol.txt generated in Project_L0 must be added to Project_L1,

so that it can be correctly compiled and linked to the SLIB-protected area code.

Add symbol definition file in Keil® μvision

Add fir_filter_symbol.txt to the project, as shown in Figure 32.

Figure 32. Add symbol definition file in Keil

Add this file to fir_filter, and then modify its file type from “text” to “Object”, as shown in Figure 33.

Figure 33. Modify symbol definition file type to “Object file”

Add symbol definition file in IAR

Add the fir_filter_symbol.o (Object) to fir_filter, as shown in Figure 34.

AT32F421 Security Library Application Note

2023.03.21 31 Ver 2.0.1

Figure 34. Add symbol definition file in IAR

3.5.3 Call functions in SLIB-protected area

After the filter.h header file is referred in main.c and the symbol definition file is added to the

project, the low-pass filter function in the protection area can be called, as shown below:

FIR_lowpass_filter(inputF32, outputF32, TEST_LENGTH_SAMPLES);

Where:

 inputF3: pointer to input signal data table;

 outputF32: pointer to output signal data table;

 TEST_LENGTH_SAMPLES: the number of signal samples to be processed.

3.5.4 Project_L1 execution process

Figure 35 shows the execution process of Project_L1:

 Start execution and LED3 keeps blinking;

 Press the USER button on AT-START board, and the FIR_lowpass_filter() starts operation;

 If the result is correct, the green LED4 will keep blinking; otherwise, the red LED2 will keep

blinking.

AT32F421 Security Library Application Note

2023.03.21 32 Ver 2.0.1

Figure 35. Project_L1 execution process

Start

LED3 toggle
continuously

User button
Pressed ?

Execute
FIR filter

test

Check
FIR test
result

Green LED4 toggle
in infinite loop

Red LED2 toggle
in infinite loop

yes

Success Fail

No

3.5.5 SLIB protection in debug mode

Development tools are used by end users to debug codes when developing applications. This

section takes Keil® μvision as an example to introduce how to protect codes in the SLIB-protected

area from being read as data in debug mode.

 Open Project_L1 and compile;

 Click “Start/Stop Debug Session” to enter debug mode;

 Right click in the “Disassembly” interface and select ”Show Disassembly at Address”, as

shown in Figure 36.

AT32F421 Security Library Application Note

2023.03.21 33 Ver 2.0.1

Figure 36. Enter Show Disassembly at Address

 Enter the address “0x08003000” of SLIB_INSTRUCTION start sector (sector 12);

Figure 37. Set Show Code at Address

 As shown in Figure 38, codes from 0x08003000 are all 0x00000000;

Figure 38. View codes

 Similarly, enter address “0x08001000” in “Memory” window, and codes are all 0x00, as shown

in Figure 39.

AT32F421 Security Library Application Note

2023.03.21 34 Ver 2.0.1

Figure 39. View codes in Memory

 In the “Memory” window, enter the address 0x08001000 of SLIB_READ_ONLY start sector

(sector 1); this region is allowed to be read through D-Code bus, so that original values can be

found, as shown in Figure 40.

Figure 40. SLIB_READ_ONLY start sector in Memory

 Click to modify the value of 0x08003000 in the code, and a warning message will be issued by

setting EPPERR=1 in the FLASH_STS register, indicating the protection is enabled.

Figure 41. SLIB write test

 In case of enable erase/program protection error interrupt, continuing execution will enter the

interrupt program.

Figure 42. Write protection error interrupt

AT32F421 Security Library Application Note

2023.03.21 35 Ver 2.0.1

4 Integrate codes and download

After codes of the solution provider and end user are configured, download to the same MCU on

the premise of guaranteeing code security. Project_L0 and Project_L1 are used to introduce two

downloading methods for reference.

This operation involves offline downloading mode of AT-Link. For details, refer to operation

manuals of ICP and AT-Link.

4.1 Program codes separately

Firstly, the solution provider programs SLIB codes to MCU; then, the end user programs application

codes to MCU. The process is as follows

(1) Method A: The solution provider uses ICP tool to save the SLIB code in the compiled project

as BIN or HEX file: download the complete project to MCU (do not configure SLIB and FAP),

read the corresponding SLIB codes (0x08001000~0x08004FFF) by using the memory access

function, and then click “File-Save Flash data as” to save codes as BIN or HEX file. In this

example, it is named “slib.bin”, as shown in Figure 43.

Figure 43. Save SLIB codes

AT32F421 Security Library Application Note

2023.03.21 36 Ver 2.0.1

Method B: The solution provider uses the compiled project to generate a .bin file directly, and

take the corresponding section in the SLIB area. For example, in the KEIL project, add “fromelf.exe

--bin --output .\Listings\@L.bin !L” in the “user” option to generate a .bin file of the corresponding

firmware, and add a suffix “.bin” to the SLIB area file. In this example, they are

“ER_SLIB_INST.bin” and “ER_SLIB_READ_ONLY.bin”, corresponding to the SLIB-INST file

(0x08003000) and SLIB-READ-ONLY file (0x08001000), as shown in Figure 44.

Figure 44. Generate .bin file of SLIB code

(2) Use ICP Programmer to program the .bin file to MCU, as shown in Figure 45.

Figure 45. Online programming to MCU in ICP

(3) End users also can use ICP Programmer to set an offline project and save it to AT-Link, and

then complete offline programming to MCU through AT-Link, as shown in Figure 46.

AT32F421 Security Library Application Note

2023.03.21 37 Ver 2.0.1

Figure 46. Offline programming to MCU via AT-Link

(4) After completing step 2/3, end users can get the MCU with programmed SLIB area (SLIB

status: enabled), and program the application code to MCU through online or offline

programming, as shown in Figure 47.

AT32F421 Security Library Application Note

2023.03.21 38 Ver 2.0.1

Figure 47. End users program codes to MCU

4.2 Integrate and program codes

Integrate the SLIB code of solution provider and the end user application code to an offline project,

and then download the integrated code to MCU through AT-Link offline programming. The process

is as follows:

(1) The solution provider handles the compiled project as aforementioned to get a slib.bin file;

(2) The solution provider uses ICP Programmer to generate an offline project and save it to PC.

Parameters (such as number of download, project files binding to AT-Link and enable FAP

after download) can be configured as needed. Save the offline project as follows.

Note: The offline project is encrypted. To enhance security, the solution provider also can set the slib.bin file

as an encrypted slib.benc file and then add it to the offline project. In this case, the offline project can only be

used on the AT-Link with the corresponding encryption key.

AT32F421 Security Library Application Note

2023.03.21 39 Ver 2.0.1

Figure 48. Set offline project

(3) After obtaining the offline project, the end user should use ICP Programmer to open the project

file and add the application codes to the offline project; then save to PC or AT -Link, and

perform offline download. Figure 49 shows how to add the project file.

Note: To protect codes from being leaked or decoded, do not change other settings when adding code file to

the offline project, which requires the solution provider to configure the final settings in advance.

AT32F421 Security Library Application Note

2023.03.21 40 Ver 2.0.1

Figure 49. Add project file

AT32F421 Security Library Application Note

2023.03.21 41 Ver 2.0.1

5 Revision history

Table 2. Document revision history

Date Version Revision note

2021.11.2 2.0.0 Initial release.

2023.03.21 2.0.1 Modified screenshots.

AT32F421 Security Library Application Note

2023.03.21 42 Ver 2.0.1

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services; ARTERY assumes no liability for purchasers’ selection or

use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous representation

in any forms. If any part of this document involves third party’s products or services, it does NOT imply that ARTERY authorizes the use of the third

party’s products or services, or permits any of the intellectual property, or guarantees any uses of the third party’s products or services or intellectual

property in any way.

Except as provided in ARTERY’s terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty, relating to use and/or

sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a particular purpose (based on the

corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other intellectual property right.

ARTERY’s products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have specific

requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements on product function

safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other applications that may cause injuries, deaths

or property damages. Since ARTERY products are not intended for the above-mentioned purposes, if purchasers apply ARTERY products to these

purposes, purchasers are solely responsible for any consequences or risks caused, even if any written notice is sent to ARTERY by purchasers; in

addition, purchasers are solely responsible for the compliance with all statutory and regulatory requirements regarding these uses.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will immediately

cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and ARTERY disclaims any responsibility

in any form.

© 2023 Artery Technology -All rights reserved

	1 Overview
	2 Application principles
	2.1 Application principle of sLib
	2.2 How to enable sLib protection
	2.3 How to disable sLib protection
	2.4 Compile and execute program in sLib
	2.4.1 Setting interrupt vector table as sLib instruction area not allowed
	2.4.2 Correlation between sLib area and user code area
	2.4.3 Use and compile software floating-point arithmetic library

	3 Example applications of sLib
	3.1 Example application requirements
	3.1.1 Hardwar requirements
	3.1.2 Software requirements

	3.2 Overview
	3.3 SLIB protected code: FIR low-pass filter
	3.4 Project_L0: example for solution providers
	3.4.1 Generate execute-only code
	3.4.2 Compile security library address
	3.4.3 Enable sLib protection
	3.4.4 Project_L0 execution process
	3.4.5 Generate header file and symbol definition file

	3.5 Project_L1: example for end users
	3.5.1 Create user application project
	3.5.2 Add symbol definition file to project
	3.5.3 Call functions in SLIB-protected area
	3.5.4 Project_L1 execution process
	3.5.5 SLIB protection in debug mode

	4 Integrate codes and download
	4.1 Program codes separately
	4.2 Integrate and program codes

	5 Revision history

