?r ? AT32F421 Security Library Application Note

ANO0071
Application Note

AT32F421 Security Library Application Note

Introduction

This application note introduces the security library (sLib) application principle of AT32F421 MCUSs,
operation methods and example projects.

Applicable products:

Part number

AT32F421

2023.03.21

Ver 2.0.1

_\)r ? AT32F421 Security Library Application Note

Contents
1 OVBIVIBW .ottt et e et et e e et ettt e e e e et e et e et e e e e et e an e enns 7
2 APPHCALION PIINCIPIES wneeeeeie e e e e s 8
2.1 Application prinCiple Of SLID........ooiiiiiiie e 8
2.2 How to enable SLiD ProteCtioN..........c.cooiiiiiiiiiiiee e 9
2.3 How to disable SLIb ProteCHIONcuueiee i e e 10
2.4 Compile and execute program in SLID ..o 11
2.4.1 Setting interrupt vector table as sLib instruction area not allowed........................... 12
2.4.2 Correlation between sLib area and USEr COOE Ar€accvveeeviiiiiriieiiieeieeeniiinneee 12
2.4.3 Use and compile software floating-point arithmetic library............ccccvvviiiiiniinnnnnnns 14
3 Example applications of SLID ... 16
3.1 Example application reqUIreMeENtScccceviiiriiiiiiiie e 16
3.1.1 Hardwar reqQUIrEMENTScooeeiiiiiee e 16
3.1.2 SOftWare reqUITEIMENTS.....oiieeiiiiie e e e ee ettt e e e e e et e e e e e e e eeeterr e e e eeeeeeeetnaeeeeeeeeees 16
T O 1= o PRSP 16
3.3 SLIB protected code: FIR I0W-Pass filter..........coouiiiiiiiiiiieiee e 17
3.4 Project_LO: example for SOIUtion ProVIAErSccceeiiiiiieiiiiiie e 18
3.4.1 Generate eXeCUtE-0NIY COURttt e e e e e eeeees 18
3.4.2 Compile security library addresscuuiiiiiiiiiiiiiei e e 20
3.4.3 Enable SLib ProteCtionuueiiiiieiiiies e e 24
3.4.4 Project_LO @XECULION PrOCESSceeiiieieeee e 25
3.4.5 Generate header file and symbol definition file............ccoovviviiiii e 27
3.5 Project_L1: example fOr €N USEIScocuiiiiiiiiiii i 28
3.5.1 Create user application ProjeCt..........couuuiiiiiii e e e 29
3.5.2 Add symbol definition file t0 ProjJECt...........oeiiieiiiiiiiiie e 30
3.5.3 Call functions in SLIB-Protected area.............cceveveuriuiiiieeeeiiiiiii s e e e eeseeeiiie e e e e eeeanens 31
3.5.4 ProjeCt_L1 @XECULION PrOCESS ...uiiiiieiiieieiiiieeeeeeeeeetiiaas s e e e eeeeeattsn s e e e e e eeeannnaeaeeeaeeenes 31
3.5.5 SLIB protection in debug MOAE..........ooeviiiiiiii e 32
4 Integrate codes and dOWNIoadccuovviiiiiiiii i 35
4.1 Program COUES SEPAIALEIYcoiuuiiiiiiiiiie e 35

2023.03.21 2 Ver 2.0.1

/|Q|_ ? AT32F421 Security Library Application Note

4.2 Integrate and Program COUESc.cuuiiiiiriiieraiiee et ettt ste e stee e e sab e sbe e e snbeeesnbee e e 38
5 REVISION NISTOMY .ot e e eens 41

2023.03.21 3 Ver 2.0.1

1?[? AT32F421 Security Library Application Note

List of tables

Table 1. Flash Size Of AT32F421 MCUSccuuiiiiiiie et e e e e e e e e e eaaes 9
Table 2. DOcUMENT reVISION NISTOTYiviiiiiiiiiiiii ittt eeeeeeeeeeeeenes 41
S D N N S] -

2023.03.21 4 Ver 2.0.1

<[

5

AT32F421 Security Library Application Note

List of figures

2023.03.21

Figure 1. Mapping of main Flash memory featured With SLiD..........ccoovviiiiiiiiiiiic e, 9
Figure 2. Literal POOl @XamPIE (L)uuuuuruririiiiiiiiiiiiiieririeiieeee e s 11
Figure 3. Literal pool @Xample (2)ooeeuiiiiiiii e 12
Figure 4. Example of function in sLib area calling the function in user code area.......................... 13
Figure 5. Example of user-defined fUNCHION...........ouuiiiiii e 14
Figure 6. Assembly codes in diViSiON fUNCLIONSuuuiiiiiiiiiciii e 14
Figure 7. Example appliCatioN PrOCESS.... ...ttt i iiiieeieiiie s e e ettt e e e e e e e et e s s e e e e eaaaa e e e e e e eeenennnnas 16
Figure 8. EXample appliCaLIONcooiiiiiiiiii e 17
Figure 9. FIR TOW-PASS filtEIuuuii et e e e e e e e e e et e e e e e e e anannaas 17
Figure 10. Enter Option interface iN Keil..............uuiiiiiiiiiii 18
Figure 11. Tick Execute-only Code iN Keil.........cooiiiiiiiiiiie e e e e e 19
Figure 12. Enter Option interface iN TARuui i 19
Figure 13. Set C/C++ OptioNS iN TARceeiiii i e et e e e e e e e s e e e e e e eaerennns 20
Figure 14. Main Flash memory mapping and RAM partition..........cccooveveiiiiiiiieeecceiiies e 20
Figure 15. Set Linker option in Kluuiiiiiiii e e e e 21
Figure 16. Modify SCAter IN KeIl........coiiiiiiiiiei et a e e aeeeaas 22
Figure 17. Modify SLIB RAM address in Keil.........c.uuuiiiiiiiiii e 22
Figure 18. Modify SLIB constant address in KEILcoooiiiiiiiiiiieeeeiiin et 22
Figure 19. SLIB address definition in icf file...........oouuiiiii e, 23
Figure 20. Address assignment in iCT fill@.............uuuiiiiiiiii 23
Figure 21. Modify SLIB used RAM N iCTfilecooiiiiiii e e 23
Figure 22. Modify SLIB read-only area in icf file ... 24
Figure 23. Configure ICP ProgramIMer.........ciiiceiiieeiiie i e s e e e ettt s s s e e e e e et s s s e e e s eaane s e e e e e eeeanennnnas 24
Figure 24. Set parameters in DOWNIoad FOIMM..........uuiiiiiiiiiiiiiiies e e e e 25
Figure 25. Project_LO @XECULION PIrOCESSuuutuuuiitiiiiitiiititititiae e e e e e e e e e e e e e e 26
Figure 26. Set MiSC CONLIOIS IN KEIl......uuuiiiiiiiiiiiiiiiiii s 27
Figure 27. Contents of modified fir_filter _SymBboOLtXE....... ..o, 27
Figure 28. Set BuUild ACHIONS IN TAR ... e e e e e et e e e e e e e e eeeennnns 28
Figure 29. Edit steering_file.txt CONTENTSuuiiiiiiiiiiiii e 28
Figure 30. Modified SCALtEr fil©.........cooiiieiiiiei e e e e e e aea s 29
Figure 31. MOdified QCT fil@. ... it 29
Figure 32. Add symbol definition file in Keil..........oouuriiriiiee e 30
Figure 33. Modify symbol definition file type to “Object file”.........ccooiiiiiiiii . 30
Figure 34. Add symbol definition file iN TARoooei e 31

- 5 T T Ver201

1=l

5

AT32F421 Security Library Application Note

2023.03.21

Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.

Project L1 @XECULION PIrOCESSuuuuuiuiuiuiiiiiiiiiiiiis e aa e e e e e e e e e e e e s e a e e e e e ens 32
Enter Show Disassembly at AQAresSS. ... oo 33
Set SNOW Code at AQAIESS ... 33
VIBW COUES ...ttt ettt ettt e 33
VIEW COOBS IN MEMIOIY ...t e e e et e e e e e e e e et e s e e e e e e aeernaans 34
SLIB_READ_ONLY start SECLOr iN MEMOIYuuueiiieeeieieieiiiase e eee et e e e e e eeeeeee e 34
SLIB W 1S, 34
Write ProteCtion error INTEITUPTvee e e e e e e r s e e e e e e eeeennnas 34
SAVE SLIB COUES ... i 35
Generate .bin file Of SLIB COUEcooiiiiiiiiiiii 36
Online programming t0 MCU iN ICPoiiiiiiiiiiiiiiii ittt 36
Offline programming to MCU Via AT-LiNK.........coiiiiiiiiiiiioe e 37
End users program cOdes t0 MCU ... 38
TSy 0 1 T = o = o 39
Add ProjJECE filE ...t 40

6 Ver 2.0.1

?r ? AT32F421 Security Library Application Note

1 Overview

As more and more MCU applications require complex algorithms and middleware solutions, it has
become an important issue that how to protect IP-Codes (such as core algorithms) developed by

software solution providers.

The AT32F421 series MCUs are designed with a security library (sLib) to protect important IP-
Codes against being changed or read by the end user’s program.

This application note details the sLib application principle and operation methods of AT32F4 21
MCUs.

2023.03.21 7 Ver 2.0.1

_\)r ? AT32F421 Security Library Application Note

2023.03.21

Application principles

Application principle of sLib

Security library is a defined area protected by a code in the main memory, so that solution
providers can program core algorithm into this area, and the rest of the area can be used for
secondary development by end customers.

Security library contains data security library (SLIB_READ_ONLY) and instruction security
library (SLIB_INSTRUCTION); users can set part of or the whole security library as
SLIB_READ_ONLY or SLIB_INSTRUCTION.

Datain the SLIB_READ_ONLY area can only be read through I-Code and D-Code and cannot
be programmed.

Program code in the instruction security library (SLIB_INSTRUCTION) can only be fetched
(can only be executed) by MCU through I-Code bus and cannot be read through D-Code bus
(including ISP/ICP/debug mode and programs that boot from internal RAM). When reading the
SLIB_INSTRUCTION area, values are all read OxFF or 0x00.

The program code and data in security library cannot be erased unless the correct code is
keyed in. If awrong code is keyed in, in an attempt of writing or erasing the security library, a
warning message will be issued by EPPERR=1 in the FLASH_STS register.

The program code and data in security library are not erased when the end users performa
mass erase on the main Flash memory.

Users can write the previously programmed password in the SLIB_PWD_CLR register to
disable security library protection. When the security library protection is disabled, the chip will
performa mass erase on the main Flash memory (including the contents of security library).
Therefore, even if the code defined by the software solution provider is leaked, the program
code will not be leaked.

The mapping of main Flash memory featured with sLib is shown in Figure 1. The program codes in

security library can be easily called and executed by end users, but cannot be read directly.

8 Ver 2.0.1

_|— — AT32F421 Security Library Application Note

Figure 1. Mapping of main Flash memory featured with sLib

User_Code_Start@

USER CODE

User_Code_End@

SLIB_Start@
SLIB_READ_ONLY

SLIB_INSTRUCTION

SLIB_End@

The range of sLib is set by sector, and the size of each sector is subject to the specific MCUs.
Table 1 lists the main Flash size, sector size and configurable range of AT32F421 series MCUs.

In addition, once the boot memory is programmed as memory extension area, the entire 4 KB area
can be used as security library.

Table 1. Flash size of AT32F421 MCUs

Model Internal Hash size (Byte) | Sector size (Byte) Configurable range

Sector 0 ~ 15®

AT32F421x4 16K 1K
(0x08000000 ~ OXO8003FFF)
Sector 0 ~ 31®
AT32F421x6 32K 1K
(0x08000000 ~ 0X08007FFF)
Sector 0 ~ 63(®
AT32F421x8 64K 1K

(0x08000000 ~ OXO800FFFF)

(1) Sector 0 cannot be configured as the instruction security library.

2.2 How to enable sLib protection

By default, security library setting register is unreadable and write-protected. To enable write
access to this register, security library should be unlocked first by writing OXA35F6D24 to the
SLIB_UNLOCK register. Then check the SLIB_ULKF bit in the SLIB_MISC_STS register to verify if
it is unlocked successfully. If successful, write the programmed value into the security library setting
register.

The steps to enable security library are as follows:

2023.03.21 9 Ver 2.0.1

<[

? AT32F421 Security Library Application Note

2.3

2023.03.21

® Check the OBF bitin the FLASH_STS register to confirm that there is no other ongoing
programming operation;
® Write OXA35F6D24 to the SLIB_UNLOCK register to unlock security library;

® Check the SLIB_ULKF bitin the SLIB_MISC_STS register to verify if it is unlocked
successfully;

® Set the sectorsto be protected in the SLIB_SET_RANGE register, including the SILB start/end

addresses and the start address of instruction security library;

® Wait until the OBF bit becomes “0”;

® Set a security library password in the SLIB_SET_PWD register;

® Wait until the OBF bit becomes “07;

® Program the code to be saved in security library;

® Perform a system reset, and then reload the security library setting words;
® Readthe SLIB_STSO0/STS1 register to verify the security library settings.
Note:

® |t is allowed to set security library in the main Flash memory and its extension area; refer to
Table 1 for the configuration range;

® The security library code must be programmed by sectors, with its start address aligned with
the address of main Flash memory or its extension area;

® The interrupt vector table is in data type and usually placed in the first sector (sector0Q, which
should not be configured as security library instruction area) of the main Flash memory.

For details about security library setting register, refer to AT32F421 Series Reference Manual.

The security library can be enabled by the slib_enable() function in main.c file of project_I0. In
addition, users can use Artery ICP or ISP tools for configuration.

How to disable sLib protection

The security library protection can be disabled by writing the previously programmed password to
the SLIB_PWD_CLR register. While disabling security library protection, MCU will perform mass
erase operation to the main Flash memory (including the contents of security library).

The steps to disable main Flash security library are as follows:

® Check the OBF bitin the FLASH_STS register to ensure that there is no other ongoing
programming operation;
® \Write the previously programmed password to the SLIB_PWD_CLR register;

® Perform a system reset, and then reload security library setting words;

® Readthe SLIB_STSO register to verify the security library settings.

10 Ver 2.0.1

_\)r ? AT32F421 Security Library Application Note

2.4

2023.03.21

Compile and execute program in sLib

As aforementioned, program codes in the instruction security library (SLIB_INSTRUCTION) can be
fetched by MCU via I-Code bus but cannot be read via D-Code bus, which means that program
codesin SLIB_INSTRUCTION cannotread the data saved in the same SLIB_INSTRUCTION. For
example, literal pool, branch table or constant compiled from C program code in the
SLIB_INSTRUCTION cannot be read via D-Code bus.

Only instructions rather than data can be placed in the instruction security library. Therefore, when
compiling program codes to be placed in the instruction security library, the user must configure the
compiler to generate execute-only codes to avoid generating the above mentioned data.

Figure 2 and Figure 3 show the examples of literal pool and branch table.

The “switch()” is a jump instruction in C program, and the “sclk_source” variable is used to read the
CRM_CEFG register. As shown in Figure 2, the compiled assembly code “LDR R7, [PC, #288]”
obtains the address of the CRM_CFG register in a PC (program counter) indirect addressing
manner, and the address of the CRM_CFG register is saved as a constant in the adjacent
instruction area (within the instruction security library) ; therefore, the data is read when the
“switch()” instruction is executed. An error will occur if there is such program code in the instruction
security library.

The example programin Section 3 introduces how to configure compiler settings to avoid error.

Figure 2. Literal pool example (1)

0x08004798 2600 MOVS r6, #0x00

79: 3clk_source = (crm_sclk_type)CBM-»>cig bit.sclksts;
20:
cS0x0B00479A 4F39 LDR r7, [pc, #228] ; BOx0BO04880
0x0800479C 687TF LDR r7, [r7,#0x04]

O0x0800479E F3CT0381 UBFX r3,r7, %2, %2
PTT EE,
81: awitch (sclk =source)

Mo
[N

case CRM SCLK HICK:

_] main.c] startup_at32f403a_407.s] at32f403a 407_clock.c || system_at32f403a 407.c]| at32f403a 407_am.c]| at32f403a_407_gpio.c

78 /% get sclk source */
P 79 || sclk_source = (crm_sclk type) CRM->cfg bit. sclksts:
80
81 ;Witch(sclk_source)
82m {
83 case CRM_SCLE_HICK:
84 if (((CRM->misc3_bit.hick to_sclk) != RESET) && ((CRM->miscl_bit.hickdi:
85 svstem core_clock = HICK_VALUE * 6;
86 else
87 svstem core_clock = HICK VALUE;
88 break;
11 Ver 2.0.1

<[

? AT32F421 Security Library Application Note

2.4.1

2.4.2

2023.03.21

Figure 3. Literal pool example (2)

137: system core_ clock = system core clock »»> div_walue;
Ox0800486E 4F0& LDE r7, [pc, $24] ; BOxOB0048BE
0x08004870 &B3F LDE r7, [x7,#0x00]
0x08004872 40F7 LSR5 r7,r7,r6
Ox08004874 FEDFCO10 LDR.W rl2, [pc, #16] ; B0Ox0B0048E88
Ox08004878 FECCT000 STR r7, [rl2, #0x00]

138: }

:bﬂxGBGG&BTC BDFO ECPE {rd4-r7,pc}
0x0800487E 0000 DCW 0x0000
Ox08004880 1000 DCW 0x1000
Ox08004882 4002 DCW 0x4002

Setting interrupt vector table as sLib instruction area not
allowed

The interrupt vector table contains entry point address of each interrupt handler, which is read by
MCU via D-Code bus. Generally, the interrupt vector table is located in the first sector (sector0,
starting address: 0x08000000). Therefore, the following rules must be followed when setting the
instruction security library:

® Do not configure the first sector of the main Flash memory as sLib instruction area.

Correlation between sLib area and user code area

Program code (IP-code) protected by sLib area can call functions from the function library located
in user code area (outside the sLib area). In this case, these function addresses are contained in
the IP-Code, allowing PC (program counter) to jump to these functions when IP-Code is executed.
Once the sLib area is enabled, function address cannot be changed. At this point, addresses of
functions in the user code area must be fixed; otherwise, PC will jump to a wrong address and
cannot work properly. Therefore, when configuring the sLib area, all functions related to IP-Code
should be compiled into the sLib area. Figure 4 gives an example of the protected Function_A()
being called to Function_B() in the user code area.

12 Ver 2.0.1

_\)r ? AT32F421 Security Library Application Note

Figure 4. Example of function in sLib area calling the function in user code area

User_Code_Start@

Function B fixed@ Function_B()

{
...... ; User code area
{
User_Code_End@

SLIB_Start@
Function_A()
{
Function_B(); SLIB area
}

SLIB_End@

In addition, the standard function library of C programming language is commonly used, such as
memset() and memcpy() functions. If both IP-Code and user area code call such functions, the
above mentioned error may occur.

Recommended solutions:
1) Compile into the sLib area (refer to Keil or IAR documents for details).

2) Do notuse the standard function library of C programming language in IP-Code. If itis
necessary to use in IP-Code, functions to be used must be renamed. Figure 5 shows an
example of writing the my_memset() function to replace the original memset() in IP-Code

2023.03.21 13 Ver 2.0.1

][R

AT32F421 Security Library Application Note

Figure 5. Example of user-defined function

voidk my_memset (void *s, int ¢, size t n):
void arm_fir_ init f£32(

arm_fir_ instance f32 * 5,

uintl6é_t numTaps,

float32_t * pCoeffs,

float32_t * pState,

] uint32 t blockSize)

/% Assign filter taps %/
S—>numTaps = numTaps;

/% Assign coefficient pointer */
S->pCoeffs = ploeffs;

7Y Clear State DUTTer and Ihe SizZe Of State buifer 15 (blocksize T mumlaps — 1)
my_memset (pState, 0, (numTaps + (blockSize — 1u)) * sizeof(float32_t)) |

/* Assign state polnter */
S->pState = pState;

=R

yoid* mv_memset (void %s, int ¢, size t n)
" while (n>0)
%((char¥)s + n— —1) = (char)e:

return (s);

2.4.3

Use and compile software floating-point arithmetic library

Since the AT32F421 series does not have a hardware floating point unit (FPU), the Keil or IAR

compiler will use ARM® software floating-point arithmetic library for floating-point operations. The

software floating-point arithmetic library functions are compiled codes that cannot be modified, and

some of them are in the literal pool format as mentioned before; therefore, these functions cannot
be compiled to the SLIB_CODE but must be placed in the SLIB_READ _ONLY area. As shown in
Figure 6, the division functions in Keil floating-point arithmetic library have assembly codes in literal

pool format.
Figure 6. Assembly codes in division functions

Disassembly
0x0803C776 FIEFS000 MRS ro, APSE
0x0303C774h 4770 BX 1r

_ =esbi fdiwv:

:}DKDBDSC'?'?C F44FOCTF MOV rl2, #0xFFOOOO
0x0503C750 EAI1CIZDO ANDS rz,rlz,r0, L3R #7
0x0303C754 EF1E ITTT NE
O0x0503C786 EA1CI3D1 ANDS r3,rl1z,rl,L3R #7
Ox0803C75A EASZOFOC TEQ ri,riz
O0x0803C7SE EAS3OFOC TEQ ri,riz
O0x0803C792 FOOOS085 EBEQ.W Ox0503C5L0
O0x0803C796 EASOOFOL TEQ ri,rl
O0x0803C79L BEF45 IT NI
0x0803C79C F4427230 ORR rz,rz,#0x100
0x0303C7A0 F4400C00 ORR rilz,r0, #0x300000
O0x03803C7A4 F4410000 ORR ro,rl, #0x800000
O0x0303C7A8 FOZC417F BIC rl,rlz,#0xFF0O00000
0x0503C7AC FOZO407F EBIC r0,r0, #0xFFO00000
0x0303CYED BESOO PUSH {1lr}

Ox0803C7EZ 4281 CHP ri,r0

0x0S03C7E4 ERAZOZ203 SUR ré,ri,ri

O0x0803C7ES FZ0OF1COS ADR.W ri1z,{pc+0x10C ; @O=0S03CEC4E
O0x0803C7EC EBAC4ESO SUE lr,r1Z,r0,L3E #17

O0x0803C7C0O F1CO0D0D RSB r0,r0, #0x00

0x0803C7C4 FS9EEOOO LDRE 1r, [1r, #0x00]

Ox0O803C/ T8 EAFFOEGE L5350 I, I, %71

0x0303C7CC FEOOFCOE MUL rlz.r0.1lr

2023.03.21

14 Ver 2.0.1

?r ? AT32F421 Security Library Application Note

After the sLib protection is enabled, all contents in the sLib protected area cannot be changed,
including the address of floating-point arithmetic library functions called by SLIB_CODE. Section 3
introduces how to compile the floating-point arithmetic library functions to be used into the
SLIB_READ_ONLY area, so that programs in SLIB_CODE can be called properly after the sLib
protection is enabled.

For details about Keil floating-point arithmetic library, refer to the ARM DUIO378G ARM® Compiler
v5.06 for uVision® ARM C and C++ Libraries and Floating-Point Support User Guide under the
installation directory.

For details about IAR floating-point arithmetic library, refer to the EWARM_DevelopmentGuide IAR
C/C++ Development Guide (PREBUILT RUNTIME LIBRARIES section) under the installation
directory.

2023.03.21 15 Ver 2.0.1

<[

? AT32F421 Security Library Application Note

3.1
3.1.1

3.1.2

3.2

2023.03.21

Example applications of sLib

This section introduces example applications of sLib and how to complete these applications step
by step.

Example application requirements

Hardwar requirements

® AT-START-F421 demo board with AT32F421C8T7 chip
® AT-Link emulator for debugging

Software requirements

® Keil® pvision IDE (uvision V5.18.0.0 is used in this example) or IAR Embedded workbench
IDE (IAR V8.22.2 is used in this example)

® Artery ICP or ISP programming tools for enabling and disabling sLib

Overview

This application note provides two sample projects to demonstrate that software developers

develop IP-Code for end-user applications.

® Project_LO: Solution provider develops algorithm and compiles to sLib

® Project_L1: Apply algorithm by end users

The algorithm completed in Project_LO will be pre-downloaded and pre-burned to AT32F421 chip

and configured as sLib protected. In addition, the following settings are available for the end-user

applications.

® Main Flash memory mapping, showing the area occupied by sLib and the area where users
can develop programs;

® Header file that contains algorithm function definitions, and end users can call relevant
functions;

® Symbol definition file, which contains the actual address of each IP-Code function, so that
functions can be called properly by the end-user application.

Figure 7. Example application process

Project_LO
Programs SLIB protected code

Project_L1
Programs End User Code
Using SLIB protected functions

End user application

16 Ver 2.0.1

?r ? AT32F421 Security Library Application Note

3.3

2023.03.21

Software solution providers can refer to the Project_LO to develop algorithm code and refer to
Project_L1 for end-user application.

Figure 8. Example application

Provide AT32F421 Provide pre burned
IP-CODE AT32F421 chip

chip . .
) 0000 PO —p SNCST
Project_|O Project_I1

SLIB protected code: FIR low-pass filter

This example uses FIR low-pass filter algorithm provided by CMSIS-DSP library as the sLib
protected IP-Code. For details about FIR low-pass filter algorithm, refer to CMSIS-DSP relevant
documents. This application note mainly introduces how to configure sLib to protect this algorithm
and how it is called by the end-user program code.

The low-pass filter input signal in this example is a combination of two sine waves at frequencies of
1 KHz and 15 KHz, while the low-pass filter cut-off frequency is about 6 KHz. A 15 KHz signal is
filtered through the low-pass filter and outputs 1 KHz sine wave. Figure 9 shows the FIR low-pass
filter functions.

Figure 9. FIR low-pass filter

Input signal Output signal
1 1
L AU SO R I 0E
= : : = |
= X i |
s : E EEE) FRiowPassFiter N O
L a J“,“ b i
i s 1 15 7 5 i [i 5 2 25
=10 w1t

CMSIS DSP library functions and files to be used are:

® arm_fir_init_f32()

It is used for initialization of filter, which is included in “arm_fir_init_f32.c” file.
® arm_fir_f32()

It is the main part of filter algorithm, which is included in “arm_fir_f32.c” file.
® FIR_lowpass filter()

It is a FIR low-pass filter global function written by using the above two functions. It is called by the
end user and is included in “fir_filter.c” file.

® fir_coefficient.c

This C file contains coefficients (read-only constants) used by FIR filter functions, and these
coefficients are placed in read-only area in the example.

Since the AT32F421 series does not have an embedded hardware FPU, the floating-point
arithmetic library functions in this example are used for signal processing and floating -point
operations.

17 Ver 2.0.1

_\)r ? AT32F421 Security Library Application Note

3.4 Project_LO: example for solution providers

The following projects are completed in this level:

Compile the algorithm-related functions to execute-only code;

Place the algorithm program code to the main Flash memory sector12 to sector19 (address:
0x08003000 ~ OX08004FFF);

Place the filter function coefficients, floating-point arithmetic library and C library used by the
programto the main Flash memory sector4 to sectorll (address: 0x08001000 ~ 0X08002FFF);

Execute FIR lowpass_filter() in the main programto verify its correctness;

If correct, configure sector12 to sectorl9 as instruction security library and sector4 to sectorl1l
as read-only area, which can be completed by calling slib_enable() function in the main
program or using Artery ICP Programmer (recommended);

Generate the header file and symbol definition files that are used by end-user programto call
low-pass filter functions.

3.4.1 Generate execute-only code

Each toolchain has specific setting options to prevent the compiler generating literal pools and
branch table that can read data while executing instructions, such as “LDR Rn, [PC, #offset]”.
Section 2.4 lists examples of literal pool and branch table.

For example, Keil® pvision has Execute-only Code option, which can be set as follows:

Keil® pvision: Set Execute-only Code option

Operate as follows:

Select C file group or individual C file (in this example, the C files to be protected are placed in
“fir_filter”);

Right click and select the corresponding files (for example, the Option for File ‘arm_fir_f32.c),
as shown in Figure 10;

Figure 10. Enter Option interface in Keil

=14 fir_filter
&_’I arm_fir_f32.c -
$J arm fir init f32.c aﬁ\ Options for File "arm_fir_f32.c"... Alt+F7
_’| fir_coefficient.c Remove File ‘arm_fir_f32.c’

$—1 flr_fllter.c ﬁ Manage Project Ikems...

2023.03.21

Tick “Execute-only Code” in the C/C++ and the “--execute_only” instruction is added to the
compiler control string, as shown in Figure 11;

18 Ver 2.0.1

:-‘ll ? I-

? AT32F421 Security Library Application Note

Figure 11. Tick Execute-only Code in Keil

Froperties C/CH |

 F Symbols

Define: I

Undefine: I

C Language / Code Generation
¥ Execute-only Cods | [7 Strict ANSI C

Optimization: I<de{ault> ;I [¥ Enum Container always int IAH Wamings jv

Wamings:

[¥ Optimize for Time [¥ Plain Charis Signed [¥ Thumb Mode
[Split Load and Store Multiple [¥ Read-Only Position Independent [¥ No Auto Includes
[¥ One ELF Section per Function [¥ Read-Wiite Position Independert [¥ €99 Mode
Include
Paths I B
Misc I
Controls

Compiler | |-execute_only -ctq:u Cortex-M4 fp -D__MICROLIB g -00 —apcs=interwork —split_sections | .\ \. »
control =t frersting - S Nibrares \omsis\cmdhcore_support - 8 Nibranes emsis
string

[1):4 I Cancel Defanlts Help

2023.03.21

® Thearm_fir_f32.c, arm_fir_init_f32.c and fir_filter.c are in the SLIB_INSTRUCTION area, and

these files need to be set as generating execute-only code.

IAR: Set No dataread in code memory option

Operate as follows:

® Select the corresponding file in the fir_filter group; right click and select Option;

Figure 12. Enter Option interface in IAR

—1 Wl fir_filter

arm_fir_{32.c -
arrr_fir_init_{32.c Options...
[5] fir_coefficient.c —

2] fir_filter.c

® Enter "C/C++" interface and tick “Override inherited settings” and “No data read in code

memory”, as shown in Figure 13;

19

Ver 2.0.1

1?[? AT32F421 Security Library Application Note

3.4.2

2023.03.21

Figure 13. Set C/C++ options in IAR

[Exchude from build

Categany: | Oweride inherited settings | Factary Settings

Static Analysis
Runtime Chedking

Custom Build Freprocessor | Diagnostics | MISEA-C: 2004
MISRA-C:1998 | Encodings | Extra Optiens
Language 1 | Language 2 | Code |Uptimizations | Output IList

Frocessor mode

Arm
(@ Thumb

Fozition-independence

utode and read-only data [(ropi)i
Dﬁeadt”write data (rwpil
Ho dymamic readfwrite initializati

Ho data reads in code memoryl

0K] ’ Cancel

® Thearm fir f32.c,arm_fir_init f32.c and fir_filter.c are in the SLIB_INSTRUCTION area, and
these files need to be configured as generating execute-only code.

Compile security library address

As aforementioned, the first sector (sector0) of the main Flash memory is used to store interrupt
vector table. Therefore, the security library is set from sector 4 in this example, with sectors 12-19
being set as instruction security library and sector 4-11 being set as read-only area. Figure 14
shows the main Flash memory mapping and RAM partition. The main purpose of RAM patrtitioning
is to avoid the same RAM being used by sLib-protected code and end user code.

Figure 14. Main Flash memory mapping and RAM partition

0x20000000 0x08000000
Vector table

User RAM User code
0X08000FFF
0x20002FFF 0x08001000

0x20003000 SLIB_READ_ONLY
SLIB used RAM - -
0x08002FFF
0x20003FFF 0x08003000
SLIB_INSTRUCTION

0X08004FFF
0x08005000

User code
OX0800FFFF

- r I I | S L} -

20 Ver 2.0.1

?r ? AT32F421 Security Library Application Note

Keil® pvision: scatter file
Operate as follows:

® Click Project - Options for Target->Linker , untick “Use memory layout from Target Dialog”
and click “Edit” to open and modify slib-w-xo.sct file, as shown below:

Figure 15. Set Linker option in Keil

K Options for Target 'at_start_f403a' @1
Device] Target] Dutput] Listing} T=zer] C/CH] A=m Linker]Debug I Ttilities]
| ™ Use Memory Layout from Target Dialog | ¥/0 Base: ’7
™ Make RW Sections Position Independent R/O Base: ,W
™ Make RO Sections Position Independent RV Base ’W

I” Dont Search Standard Libraries
¥ Report might fail' Conditions as Emors

disable Wamings: |

]
Scapter [\glib sct ;
al;l_e Slwo s o] e |

Misc —symdefs=fir_filtter_symbol b -

controls

Linker |—cpu Cortex-M4fp *o ~
contral |ibrary_type=microlib —strict —scatter " \slib-wxo sct"
string 4

[1):4 Cancel Defaults Help

® Open scatter file, load the object file of the code to be placed in SLIB_INSTRUCTION areato
“LR_SLIB_INSTRUCTION” (adedicated loading area that starts from sector 12 and occupies
eight sectors) and modify the label to “execute-only (+XO)”. Place the area occupied by
SLIB_READ_ONLY to a dedicated loading area named “LR_SLIB_ READ_ONLY” to avoid the
compiler compiling other non-IP-Code functions to the SLIB area. The RW_IRAM2 assigns the
region from 0x20003000 to 0x20003FFF to the sLib algorithm functions to avoid the same
RAM region being used by end-user project, causing fault or error in program execution
process.

2023.03.21 21 Ver 2.0.1

1?[? AT32F421 Security Library Application Note

Figure 16. Modify scatter in Keil

LR _IROM1 0x08000000 0x=001000 { : load region size region
ER_IROM1 0x08000000 0x001000 { ; load address = execution address
#.0 (RESET, +First)
#(InRoot$8Sections)
.ANY (+RO)
RW_IRAM1 0x20000000 0x00003000 { : user RW data

CANY (+RW +ZI)

RW_IRAM2 0x20003000 0x0Q0001000 { ; RAM used for slib code
}firffilter.o (+RW +ZI)
1

; user can also use this section to place slib read-only
LR_SLIB_READ_ONLY 0x08001000 0x00002000 { : sLib read-only
ER_SLIB_READ_ONLY 0x08001000 0x00002000 {
fir coefficient.o (+R0O)
Farmlib* (+R0)
T

}

LR_SLIB_INST 0x08003000 0x00002000 { : slib inst
ER_SLIB_INST 0x08003000 0x00002000 { : load address = execution address
arm_fir_init_f32.0 (+X0)
arm fir £32.0 (+X0)
fir_filter.o (+X0)

}

LR _IROM2 0x08005000 0x0000B000 { : user code area
ER_IROM2 0x08005000 0x0000B000 { ; load address = exzecution address
CANY (+RO)
t

Note: Use *armlib* to compile the floating-point arithmetic library functions and C standard library to
LR_SLIB_ READ_ONLY area.

® |n addition to modifying the scatter file, for the RAM used by IP-Code, users can also use the
Keil “__attribute__ ((at(address)))” descriptorto load variables to 0x20003000, as shown in

Figure 17.

Figure 17. Modify SLIB RAM address in Keil

#if defined (__ ICCARM_ _

static float32 t firStateF32[BLOCK_SIZE + NUM_TAPS - 1] @ 0x20003000 ;
Zelif defined (__ CC_ARM)
static float32 t firStateF32[BLOCK_SIZE + NUM_TAPS - 1] _ attribute | ({at(0x20003000))) ;

Hendif

® The start address of read-only area is sector 4 (0x08001000). To compile the constants used
by FIR low-pass filter to this address, users can modify the scatter file as aforementioned, or
use Keil “__attribute__ ((at(address)))” descriptor to load the constants to a fixed address, as
shown in Figure 18.

Figure 18. Modify SLIB constant address in KEIL

Jgif defined (ICCARM__)

Jeconst float32 t firCoeffs32[NUM_TAPS] @ 0x08001000 ={
telif defined { _ CC _ARM)
Jconst float32 t firCoeffs32[NUM TAPS] attribute [({at(0x08001000))) |=

-Hendif

2023.03.21 22 Ver 2.0.1

?r ? AT32F421 Security Library Application Note

IAR: ICFfile
Operate as follows:

® Openthe icffile in “\project_IOMIAR_V8.2\", and add three new loading areas as shown in
Figure 19. The SLIB_RAM region reserves the corresponding RAM (0x20003000 to
0x20003FFF) for the algorithm functions.

Figure 19. SLIB address definition in icf file

/* SLIE read-only area */
define symbol _ ICFEDIT_ region_ SLIE_READ ONLY start = 0x08001000;
define symbol ICFEDIT region SLIB READ ONLY end = 0Ox08002FFF;

/* SBLIB instruction area */

define symbol _ ICFEDIT region SLIB_INST start = 0x08003000;
define symbol ICFEDIT region SLIE INST end = 0x08004FFF;
define symbol ICFEDIT region RAM start = 0x20000000;
define symbol _ ICFEDIT region RAM end = 0x2000ZFFF;

/* SLIB REM region */
define symbol ICFEDIT region SLIE RAM start
define symbol ICFEDIT region SLIB RAM end

0x20003000;
0x20003FFF;

® In theicf file, the area occupied by SLIB is reserved to avoid the compiler compiling other non-
IP-Code functions to the SLIB area, and the RAM region used by IP-Code is reserved.

Figure 20. Address assignment in icf file

/* Reserved 0x08001000 ~ Ox0BO0O2FFF as SLIB area */
define region ROM region = mem: [from _ ICFEDIT region_ROM_start__ to _ ICFEDIT_region_ROM end_]

-mem: [from _ ICFEDIT_region_SLIB_READ ONLY_start__ to _ ICFEDIT_ region_SLIB_READ_ONLY_end]

-mem: [from __ ICFEDIT region_SLIB_INST start__ to _ ICFEDIT_region SLIB_INST_end_] ;
define region SLIB_READ_ONLY_region = mem:[from _ ICFEDIT_region_ SLIB_READ ONLY_start__ to _ ICFEDIT region SLIB_READ_ONLY_end]:
define region SLIB_INST region = mem: [from __ ICFEDIT_region SLIB_INST start_ to _ ICFEDIT_region_SLIB_INST end];

/* Reserved 0x20003000 ~ 0x20003FFF as RAM used for SLIB code */

define region RAM regicon = mem: [from _ ICFEDIT regicn RAEM start to _ ICFEDIT region RAM end]
- mem: [from _ ICFEDIT region SLIB_RAM start to _ ICFEDIT region SLIB_RAEM end]
define region SLIB_RAM region = mem:[from _ ICFEDIT region SLIB RAEM start_ to _ ICFEDIT region SLIB_REM end]

® Forthe RAM used by IP-Code, users can use the IAR @ descriptor to load variables to a fixed
address (0x20003000) or modify the icf file, as shown in Figure 21.

Figure 21. Modify SLIB used RAM in icf file

place in RAM region { readwrite,
block CSTACE, block HEARP };

/* Place slib used sram */
place in SLIE RAM region { readwrite object fir filter.o };

® The startaddress of read-only area is sector 4 (0x08001000). To compile the constants,
m7Mx _tl.a (floating-point arithmetic library) and rt7Mx_tl.a (C library) used by FIR low-pass
filter to this address, as shown in Figure 22.

2023.03.21 23 Ver 2.0.1

ART

? AT32F421 Security Library Application Note

3.4.3

Figure 22. Modify SLIB read-only area in icf file

/% Place SLIE DATA (or CODE) in read-only area
place in SLIB_READ ONLY region ro object fir coefficient.o,

/* Place IP Code in instruction area which will be SLIB protected */
place in SLIB_INST_ region { ro cbject arm fir f32.o,

ro ocbject arm fir init £32.o,

ro cbject fir filter.o}:;

*/

ro cbject mTMx_tl.a,
ro cbject rt7Mx tl.a |;

Enable sLib protection

There are two methods to enable sLib protection:

(1) Use ArteryICP Programmer (recommended)
It is recommended to use Artery ICP Programmer as follows:

® Connect AT-Link emulator to AT-START-F421 board and then power on;

® Open ICP Programmer, select AT-Link for connection, and add the HEX or BIN file generated

by Project_LO, as shown in Figure 23.

Figure 23. Configure ICP Programmer

iV Artery ICP Programmer_V2.5.00

= o |

Part Number: AT32F421C8T7 FlashSize: 64KB
AT-Link-EZ FW: V1.5.12
AT-Link SN: 6C9250320000B32905970902

0

Memory read settings

File J-Link settings AT-Link settings Target Language Help

AR
W 15 7

| Address Ox 08000000 Read size 0x 00002000 Data bits ’B bits v] [Read

|| File info

MNo. File name File size Address range(0x) Add
1 project_|0.hex 8224 08000000-0800031B,08001000-08001D97,0§
“ LU r
Flash CRC] [File CRC verify] [DownLoad
Address range:[0x080000 0800031B] Address range:[0x08001000 0x08001097] Address range:[0x08003000
0x0800310B]1 _Address ranae:[0x08005000 0x08005E5F] _checksum: 0x000C2944
I Address 0 1 2 B 4 5 & 7 8 9 A B C [0} E F I -
| 4 |16 (00 |20 |01 |50 |00 (OB (4D |50 |00 |08 (45 |50 (00 |08 @:l—l
0x08000010 43 |50 |00 |08 |25 |50 |00 (OB |(C1 |50 (0O (OB (OO |00 (OO (OO |IP.
0x08000020 00 (00 |00 |00 (0O (OO (OO (OO (OO (OO0 (OO (OO |51 |50 (OO (0B ...
[l
0x08000030 23 |50 (00 |08 |00 (OO (OO |00 |4F 50 |00 (08 |53 |50 |00 |08 |)P.
0x08000040 18 |50 |00 |08 (1B |50 |00 (OB |1B |50 (0O (0B (2B |50 (OO0 |08 |OP
W [«] o w — T o
14:00:04 : AT-Link connection is successful. -
14:00:04 : Part Mumber: AT32F421C8T7 FlashSize: 64KB
14:00:04 : Target device connection successfully!
B
Current Time : 2021/11/2 14:00:21 All Rights reserved by Artery Technology Co.ltd

2023.03.21

24

Ver 2.0.1

P AT32F421 Security

Library Application Note

3.4.4

2023.03.21

® Click “Download” and the “Download Form” pops up,

which shows sLib status and relevant
parameters. Set the start sector, INSTR start sector and end sector; set the enable password
as “0x565665566” (user-defined) and tick “Enable sLib”; then click “Start Download” to complete

programming and enable sLib successfully, as shown in Figure 24.

Figure 24. Set parametersin Download Form

[DownlLoad Form

i — R e —

sLib status
sLib status: Disable

Enable password {x 35665566

Disable password Ox Start sector
INSTR start
End sector
L .
Extra options
[Erase the sectors of file size v]

R - El !

[E=REERS

[Sectordl——{)xﬂs{}{}l{}{}o v]

secio [SectorlE——DxOB{}DE{}C}O v]

[Seaorlg- -Dx0B004C00 v]

[7] Disable sLib before download

Verify

Enable sLib

[Jump to the user program

7] Write software serial number(SN)

L 08010000
00000001

00000001

[C] Write user system data

[7] Disable FAP befare download

[7] Enable FAP after download

lBasic access protection -

[[] Button free mode

Start Download

For details about ICP Programmer, refer to ICP Programmer User Manual.

(2) Use slib_enable() in main.c

After the slib_enable() function is verified correct by low-pass filter function and then executed, the

sLib protection can be enabled. To execute this function,
USE_SLIB_FUNCTION’ in main.c.

Project_LO execution process

In this example, FIR low-pass filter calculates the input signal (testinput_f32_1kHz_15kHz) mixed
with 1 KHz and 15 KHz sine waves, and the output 1 KHz sine wave data is saved in testOutput,
which will be compared with the data calculated by MATLAB and saved in refOutput. If the error
value is smaller than expected (SNR larger than the preset threshold), the green LED on the board
blinks; otherwise, the red LED blinks. Figure 25 shows the Project L0 execution process.

enable the “#define

25

:'=/| ?I_

? AT32F421 Security Library Application

Note

2023.03.21

Figure 25. Project_LO execution process

Execute
system rest to activate
SLIB

T

Green LED4 on
3 seconds

A

Yes

SLIB
Operate
uccessfully?

No Enable SLIB

-
i

LED3 toggle
continuously

User button
Pressed ?

yes

Execute
FIR filter
test

Check
FIR test
result

Success

SLIB
already
enabled?

Yes

Green LEDA toggle
in infinite loop

Go through the following steps to execute this example program:

(1) Use Keil® pvision to open the Project_LO under
\utilities\AT32F421_slib_demo\project_I0\mdk_v5\, and then compile;

(2) Before downloading the code, check whether the chip on AT-START-F421 board is sLib-
protected or write/read-protected (FAP/EPP). If it is protected, use ICP programmer to disable

protection and then download the code;

(3) After successful download, start to execute the code, and the on-board LED3 keeps blinking

rapidly;

(4) Press the on-board USER button to perform operation of low-pass filter;

(5) Compare the computation result. If it is correct, the green LED4 keeps blinking; otherwise, the

26 Ver 2.0.1

?r ? AT32F421 Security Library Application Note

red LED2 keeps blinking;

(6) After obtaining the correctresult, if the USE_SLIB_FUNCTION in main.c is defined and the
SLIB is not enabled, the slib_enable() function will be executed to set SLIB. If SLIB setting
fails, the red LED2 will be always ON; if SLIB setting succeeds, the green LED4 will be ON for
about three seconds and then perform system reset to enable SLIB; then, go to step (3).

3.4.5 Generate header file and symbol definition file
The header file and symbol definition file are used when the Project_L1 calls FIR low-pass filter
functions, which is the fir_filter.h file in main.c in this example.
The generation of symbol definition file is related to the specific toolchain being used.
Use Keil® pvision to generate symbol definition file
Operate as follows:
® Enter Options for Target - Linker interface;

® Add “--symdefs=fir_filter_symbol.txt” command in the “Misc controls”, as shown in Figure 26;

Figure 26. Set Misc controls in Keil

r k4 Options for Target 'project_|0" &11
Devlce] Target] Output] Llstlng] User] C/CH] A=m Linker WDebug] Ttilities]
™ Use Memory Layout from Target Dialog X%/0 Base: ,7
I Make RW Sections Position Independent R/O Base: ,W
[Make RO Sections Position Independent R/W Base ’W

™ Dont Search Standard Libraries
¥ Report might fail' Condttions as Emors

disable Wamings: |

Scatter | “alib-wxo sct D Edit...
File

Miscl —symdefs=fir_filter_symbol bd

controls

Linker |-cpu Cortex-M4 "o -
control |Hibrary_type=microlib —strict —scatter " \slib-w-ao sct”
string wil

0K || Bamadl || Defaults Help

® After compiling the project, a symbol definition file named “fir_filter_symbol.txt” is generated
under “project_I0\mdk_v5\Objects”;

® This symbol definition file contains all symbol definitions of the project, and it needs to be
modified to only remain the definitions of low-pass filter functions to be called by end users.
The modified fir_filter_symbol.txt is shown in Figure 27;

Figure 27. Contents of modified fir_filter_symbol.txt

0x08003001 T FIR_lowpass _filter

2023.03.21 27 Ver 2.0.1

1?[? AT32F421 Security Library Application Note

Use IAR to generate symbol definition file
Operate as follows:
® Select Project->Option->Build Actions

Figure 28. Set Build Actions in IAR

, ,

Categony:

General Options
Static Analysis
Runtime Checking
CfC++ Compiler
Agzembler) o
Output Converter Pre-build command line:
Custom Build D
Linker $TOOLEIT _DIR$hbin'isymexport. exe ——edit "§PREOT_DIEf\st. [1:]
Debugger
Simulator
CADI
CMSIS DAP
GDB Server
I4et/ITAGIet
IinkyJ-Trace
TI Stellaris
Mu-Link
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET
TIXDS

Euild Actions Configuration

QK.] [Cancel

® Input the following commands to the Post-build command line:

$TOOLKIT_DIR$\bin\isymexport.exe --edit "$PROJ_DIRS$\steering_file.txt"
"$TARGET_PATHS$" "$PROJ_DIRS\fir_filter_symbol.0"

® Thefir_filter_symbol.o is the symbol definition file to be generated, and the steering_file.txt is
saved under “project_IO\iar_v8.2”, which is used to select function symbols to be generated.
Users can manually edit the contents called by sLib. As shown in Figure 29, the "show" is the

command used to select functions.

Figure 29. Edit steering_file.txt contents

show FIR lowpass filter

3.5 Project_L1: example for end users

Project_L1 uses the FIR low-pass filter function that is debugged in Project_LO, programmed to
AT32F421 MCU main Flash memory and SLIB-protected. According to the header file, symbol
definition file and the main Flash memory mapping of Project_LO, end users can complete the
followings for Project_L1:

® Create an application project;

® Add the header file and symbol definition file provided by Project_LO to the project;

2023.03.21 28 Ver 2.0.1

?r ? AT32F421 Security Library Application Note

3.5.1

2023.03.21

® Call the FIR low-pass filter function;

® Develop and debug user’s program.

Note:

Project_L1 must use the same toolchain and the same version of the compiler as those of
Project_LO; otherwise, incompatibility problem may occur and the code provided by Project_LO
cannot be used properly. For example, Project_LO uses Keil® pvision VV5.18.0.0; therefore,
Project_L1 need to use the same version.

Create user application project

The security library enabled in Project_LO occupies some specific main Flash memory sectors;
therefore, the address for Project_L1 code storage should be compiled according to the main Flash
memory mapping of Project_LO. In the main Flash memory, sector 4 to sector 19 are occupied by
security library, which should be isolated by using the linker control file to avoid code being
compiled to this region.

Keil® pvision: scatter file

Refer to the end_user_code.sct under “project_I1\mdk_v5\", and divide the main Flash memory into
two regions, and the middle partis the SLIB-protected area. In addition, the region behind
0x20003000 in the RAM should be reserved, as shown in Figure 30.

Figure 30. Modified scatter file

LR_IROM1 0x08000000 0x00001000 { ; load region size_region
ER_IROM1 0x08000000 0x00001000 { : load addressz = execution address
o (RESET, +First)
#(InRoot$5Sections)
. ANY (+RO)
RW_IRAM1 0x20000000 0x00003000 { : RVW data

ANY (+RW +ZI)
}

- 0x20003000 ~ 0x20003FFF RAM reserved for SLIB code
b
- 0x08001000 ~ 0x08004FFF is SLIB area
LR_IROM2 0x08005000 0x0000B000 { ; load region size_region
ER_IROM2 0x08005000 0x0000B000 { ; load address = execution address
.ANY (+RO)
b
b
IAR: ICF file

Refer to the enduser.icf under “project_I1\iar_V8.2\", as shown in Figure 31.

Figure 31. Modified icf file

define region ROM_region = mem: [from _ ICFEDIT region ROM_start_ to _ ICFEDIT region ROM_end_]
—mem: [from _ ICFEDIT region SLIB start_ to _ ICFEDIT region SLIB_end_ 1;:

define region RAM regicon = mem: [from __ ICFEDIT region RAEM start to _ ICFEDIT region RAM end]
— mem: [from _ ICFEDIT region SLIB_RAM start_ to _ ICFEDIT region SLIB_RAM end];
- S G - O O O
29 Ver 2.0.1

1?[? AT32F421 Security Library Application Note

3.5.2 Add symbol definition file to project

The symbol definition file fir_filter_symbol.txt generated in Project_LO must be added to Project_L1,
so that it can be correctly compiled and linked to the SLIB-protected area code.
Add symbol definitionfile in Keil® pvision

Add fir_filter_symbol.txt to the project, as shown in Figure 32.

Figure 32. Add symbol definition file in Keil

£ user

L bsp

[firmware
Ll cmsis
~ =t filter
J fir_filter_symbol. bt
[J readme

Add this file to fir_filter, and then modify its file type from “text” to “Object”, as shown in Figure 33.

Figure 33. Modify symbol definition file type to “Object file”

kA Options for File 'fir_filter_symbol.txt" @
Froperties }
Path- .\fr filter »'ﬁ: o:n -
File Type |Objec1 file j ¥ Include in Target Build
SizeHet7 ByteS F
last change: |Fn May 21 11:14:16 2021 l—
=
Stop on Exit Code: |Hot specified J I~
Custom Arguments: |
Memaory Assignment:
Code / Const: |<defaut> =
Zero Initialized Data: |:default> j
Other Data: |“:|Eff"-'|t> j
0K | Cancel Defaults Help

Add symbol definitionfilein IAR
Add the fir_filter_symbol.o (Object) to fir_filter, as shown in Figure 34.

2023.03.21 30 Ver 2.0.1

?I_ ? AT32F421 Security Library Application Note

Figure 34. Add symbol definition file in IAR

= @ project_I1 - at_start_f._. +
M bzp .
B crmisis ™
2 W fafiltar

\i [fir_fiter_symbol.ao
TiFFrerare]
B readme
B user ™
B Output

3.5.3 Call functions in SLIB-protected area
After the filter.h header file is referred in main.c and the symbol definition file is added to the
project, the low-pass filter function in the protection area can be called, as shown below:
FIR lowpass_filter(inputF32, outputF32, TEST_LENGTH_SAMPLES);
Where:
® inputF3: pointer to input signal data table;
® outputF32: pointer to output signal data table;
® TEST_LENGTH_SAMPLES: the number of signal samples to be processed.

3.5.4 Project_L1 execution process

Figure 35 shows the execution process of Project_L1:
® Start execution and LED3 keeps blinking;
® Press the USER button on AT-START board, and the FIR_lowpass_filter() starts operation;

® If the resultis correct, the green LEDA4 will keep blinking; otherwise, the red LED2 will keep
blinking.

2023.03.21 31 Ver 2.0.1

1?[? AT32F421 Security Library Application Note

Figure 35. Project_L1 execution process

L)
i

LED3 toggle
continuously

User button
Pressed ?

yes

Execute
FIR filter
test

Green LED4 toggle
in infinite loop

“4—Success

3.5.5 SLIB protection in debug mode

Development tools are used by end users to debug codes when developing applications. This
section takes Keil® pvision as an example to introduce how to protect codes in the SLIB-protected
area from being read as data in debug mode.

® Open Project_L1 and compile;
® (Click “Start/Stop Debug Session” to enter debug mode;

® Right click in the “Disassembly” interface and select "Show Disassembly at Address”, as
shown in Figure 36.

2023.03.21 32 Ver 2.0.1

AR

AT32F421 Security Library Application

Note

Figure 36. Enter Show Disassembly at Address

Rl

| = | =

Des=as-0-3- 8- 3-8 2-

| L=y mirstaterse

v ok FT| ML W VLY R [T N

Disassembly
0x08003E52 4770 BX ir
94: AT32_Board Init():
as:
96: /% Configure Flash to generate ||V | Mixed Mode error occur
E0x08003E54 2504 cHp r0, #0 Assembly Mad
0x08003ES6 D106 BIE 0x080 BELEJORE
37: Inshle_Flash_INTi): Address Range »
96:
5g: Show Disassembly at Address..
100: /7 Wait for KEY button to be p S FOTET o
O%0B003ESS 4904 LDR r1, [p aunto cursor | nerin
0x0B003ESA 6809 LDE I 1) oo e =
12;: :mue (BT32_BUTTON State (BUTTGN |\ o o o kpoint
0x0SO03ESC FOS10104 ORRS r1,r1 O Enable/Disable Breakpoint ctri=F9
0x0B003E60 4208 LDR rz, [p
I — STR i Insert Tracepoint at ‘0x0B003ES"... v
104: Delay ws (300} Enable/Disable Tracepoint
108: 3
106: Inline Assembly...
107: /% Turn Off LED3 */ Load Hex or Object file...
0x08003E64 EOOS 0x080
0%08003E66 4507 LDR £1, 00 instruction Trace v
< Execution Profiling »
] main.c T® Insert/Remove Bookmark Chrl=F2
7 B callStadk 33y copy Ctrl=C
CLib ¥1.x.:0\4UEilities\\AT32F4034_8 | pono TocsteniV Tipe

- X

B

® Enter the address “0x08003000” of SLIB_INSTRUCTION start sector (sector 12);

Figure 37. Set Show Code at Address

Show Code at Address

2]

Address:

(05003000

Go To |‘

® As shown in Figure 38, codes from 0x08003000 are all 0x00000000;

Figure 38. View codes

Disassembly

0x08003000
0x08003002
0x08003004
0x08003006
0x08003008
0x080030048
0x0800300C
0x0800300E
0x08003010
0x08003012
N=NRON3INT 4

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
nnnn

HOWVS
HCWVS
HCWVS
HCWVS
HCWVS
HCWVS
HCWVS
HCWVS
HCWVS
HCWVS
MOWE

rd, 0
rd, r0
rd, r0
rd, r0
rd, r0
rd, r0
rd, r0
rd, r0
rd, r0
rd, r0
.0

® Similarly, enter address “0x08001000” in “Memory” window, and codes are all 0x00, as shown

in Figure 39.

2023.03.21

33

Ver 2.0.1

1?[? AT32F421 Security Library Application Note

Figure 39. View codesin Memory

Memory 1

Address: |(x05003000

0x08003000: OO0 00 OO OO OO OO OO0 OO 00 OO0 00 00 OO0 00 00
Ox08003022: 00 00 OO OO OO OO OO OO OO0 OO 0O OO0 OO0 00 00
O0x08003044: 00 00 OO OO OO OO OO OO OO0 OO 0O OO0 OO0 00 00
O0x08003066: OO0 00 OO OO OO OO OO OO OO0 OO OO0 OO0 OO0 00 00
Ox08003088: 00 00 OO OO OO OO OO OO OO OO OO OO0 OO0 00 00

® In the “Memory” window, enter the address 0x08001000 of SLIB_READ_ONLY start sector
(sector 1); this region is allowed to be read through D-Code bus, so that original values can be
found, as shown in Figure 40.

Figure 40. SLIB_READ_ONLY start sector in Memory

Memory 1

Address: | (05001000

0x08001000: 40 EA 01 03 8B O7 03 DO 0% EO 08 C9 12 1F O8
0x08001022: 70 47 DZ B2 01 EO 00 F8 01 2B 49 1E FB D2 70
0x08001044: 20 46 10 BD FO B4 80 EA 01 02 D4 OF 42 00 BZ
0x08001066: C1 F3 C7 52 4D 1R 20 2D 35 DA C1 F3 16 01 41

S5F 23 DO C4 B1 01 2D RO EB C3 50 09

0x08001088: B3 EE DO

® Click to modify the value of 0x08003000 in the code, and a warning message will be issued by
setting EPPERR=1 inthe FLASH_STS register, indicating the protection is enabled.

Figure 41. SLIB write test

E

B STS
QDF B
EPPERR
PRGMERR [
OBF I

® In case of enable erase/program protection error interrupt, continuing execution will enter the
interrupt program.

Figure 42. Write protection error interrupt

41T

115 void FLASH IRQHandler (void)
116 2 {
I 117 | irf (flash flag get (FLASH EPPERR_FLAG))
1188 {
119 flash flag clear (FLASH EPPERR FLAG) :
120 delav_ms (500) :
121 }
122 |}

Ll alal

2023.03.21 34 Ver 2.0.1

1?[? AT32F421 Security Library Application Note

4 Integrate codes and download

After codes of the solution provider and end user are configured, download to the same MCU on
the premise of guaranteeing code security. Project_LO and Project_L1 are used to introduce two
downloading methods for reference.

This operation involves offline downloading mode of AT -Link. For details, refer to operation
manuals of ICP and AT-Link.

4.1 Program codes separately

Firstly, the solution provider programs SLIB codes to MCU; then, the end user programs application

codes to MCU. The process is as follows

(1) Method A: The solution provider uses ICP tool to save the SLIB code in the compiled project
as BIN or HEX file: download the complete project to MCU (do not configure SLIB and FAP),
read the corresponding SLIB codes (0x08001000~0x08004FFF) by using the memory access
function, and then click “File-Save Flash data as” to save codes as BIN or HEX file. In this
example, it is named “slib.bin”, as shown in Figure 43.

Figure 43. Save SLIB codes
[1 Artery ICP Programmer_V2.5.00 = -5

FiIe|J—Linksettings AT-Link settings Target Language Help

Save fils 2 L
T32F421C8T7 FlashSize: 64KB ’l ? |- ?

| Save flash data as... | VL15.12

Make encryption file r50320000532905970902 ﬂ' 4% ’ '

Exit 0

Memory read settings

Address Ox 08001000 Read size 0x 00004000 ata bits IB bits v] l Read] |l

|| File info

MNo. File name File size Address range(0x) Add
1 project_l0.hex 8224 08000000-08000318B,08001000-08001D97,0¢

4 m 3

Flash CRC] lFiIe CRC uerify] [Download]

Address range:[0x08001000 0x08004FFF] checksum: 0x0037582A

Address o 1 2 3 4 5 & 7 & 9 A B C] E F e -
I 40 |EA |01 |03 (9B (07 (03 |DO (09 |EO (0B |C9 |12 |[1F |08 |CO @':l—l
008001010 04 |2A |FA |D2 (03 |EO (11 |FE (01 (3B |00 |FB8 |01 (3B |52 |1E |C*
008001020 Fg |D2 |70 |47 |D2 |B2 |01 |E0 (00 |FE |01 (2B |49 |1E |FB |D2 I
008001030 70 |47 |00 |22 |F6 |E7 |10 |B5 |13 |46 |0A |46 |04 |46 |19 |46 |pG
008001040 FF |F7 |FO |FF |20 |46 |10 |BD |FO |B4 |80 |EA |01 |02 |D4 |OF

N :‘ | I = = = - B - B - _P

14:59:37 : Verification successfully ! ! -

14:59:51 : Memory reading......
14:59:52 : Memory read completed.

Current Time : 2021/11/2 15:01:19 All Rights reserved by Artery Technology Co.Ltd

2023.03.21 35 Ver 2.0.1

1?[? AT32F421 Security Library Application Note

Method B: The solution provider uses the compiled project to generate a .bin file directly, and
take the corresponding section in the SLIB area. For example, in the KEIL project, add “fromelf.exe
--bin --output .\Listings\@L.bin !'L” in the “user” option to generate a .bin file of the corresponding
firmware, and add a suffix “.bin” to the SLIB area file. In this example, they are
“ER_SLIB_INST.bin” and “ER_SLIB_READ_ONLY.bin", corresponding to the SLIB-INST file
(0x08003000) and SLIB-READ-ONLY file (0x08001000), as shown in Figure 44.

Figure 44. Generate .bin file of SLIB code

W e e e e —
Devics | Target | Output | Listing User |c/oH | hsn | Linker | Debmg | Utilities |
Cemmand Items User Command w Stop on Exi.. 5.
[=)-Before Compile C/C++ File
I~ Run =1 5] Mot Specified T
" Run#2 5] Not Specified T
- Before Build/Rebuild | | ER_IROM1
I~ Run =l 5] Mot Specified
™ Run#2 2] Not Specified ™ ER TROMZ
(=~ After Build/Rebuild
[v¥ Run#1 fromelf.exe --bin —-output AListings\@L.bin IL | 5] Mot Specified | ™ JL, ER_SUB_INST
I~ Run22 5] Mot Specified
|| | ER_SLIB_READ_OMLY

(2) Use ICP Programmer to programthe .bin file to MCU, as shown in Figure 45.

Figure 45. Online programming to MCU in ICP

I'¥ Artery ICP Programmer_V2.5.00 = = I~ DownLoad Form [ESREEE" >~ B
File J-Link settings ~ AT-Link settings Target Language Help slib status

Part Number: AT32F421C8T7 FlashSize: 64KB ’I ?r ? b staz Dissele
e wvin | Enable password Ox 55665566 l Main Flash

AT-Link _+| AT-Link SN: 6C9850320000832905570902 ﬁ 4% jj Dreable paccword Ox tart sector Sectord-0x08001000 ~
5 ; NSTR start sector| Sector12--0x08003000 ~

End sector Sector19--0x08004C00 ~
Memory read settings Extra options |
Address Ox 08000000 Read size Ox 0000031C Data bits [s bits v] [Read I [Era;e the sectors of file size -} ["] Disable sLib before download
'] Veri i §
File info Verify Enable slib
o add [Disable FAP before download
1 ER_SLIB_READ_ONLY.bin 2480 02001000-08001D97 [[] Jump to the user program [7] Enable FAP after download
2 ER_SLIB_INST.bin 268 08003000-08003108 [E] Write software serial number(SN)

[] Button free mode

08010000

00000001
Flash CRC] [File CRC verify] [DownLoad]

00000001

Hash info | File:ER_SLIB_INST bin i

Address range:[0x08003000 0x08003108] checksum: 0x00007182 D Write user system data

Address 0 1 2 3 4 5 1] 7 8 9 A B C D E F .~

2D E9 FF |47 06 |46 oF 46 (90 |46 (20 |25 |4F EA 58 19 |-xs

0x08003010 43 F2 00 |03 c2 |F2 00 |03 |41 F6 |EO 42 Co0 |F6 |00 02 |Cn

008003020 0 21 01 |AB 00 (95 00 |FO |5C (F8 |00 24 0C |E0 04 FB |17

0x08003030 05 FO 07 EE 80 |02 04 FBE 05 FO |06 EB 80 |01 (2B |46 |o% L /l

0x08003040 01 A8 (00 |FO |05 F8 64 |1C 4C |45 FO D3 |BD |EB FF 87 o¥ Start D load

3 s —
4 S ——— (Y _ _ _ ~ — —

(3) End usersalso can use ICP Programmer to set an offline project and save it to AT-Link, and
then complete offline programming to MCU through AT-Link, as shown in Figure 46.

2023.03.21 36 Ver 2.0.1

:'=/| ? I_

5

AT32F421 Security Library Application

Note

2023.03.21

Figure 46. Offline programming to MCU via AT-Link

r

1 AT-Link Setting

AT-Link settings | AT-Link offline config settings |AT-|_ir1k offline download statu5|

Offline project ’

Project name slib_project_l0

Device

AT2FA21 ~||AT32R421C8T7 -

N1 Eil

Eil

o L0l cs, Add

loca...

1 ER_SLIB_READ_ONLY.bin
2 ER_SLIB_INST.bin

3430
268

gar
08001000-08001D097
08003000-02003108

<

LU

| »

Erase option

Erase the sectors of file size

’]

[] Download times
[T] Encryption transmit
[] Write user system data

[] Enable FAP after download

lBasic access protection vl

Verify

| Software serial number(SN) | SPIM settings | sLib settings |

Enable sLib

sLlib enable password Ox

55665566

Download interface

[] Reset and run

[T] Systerm memory AP mode

Key:(0x) (0xA3SFED24)

[T] Disable sLib before download

Tt T

Start sector ’5edor4—-0x03l]]1|]10 vl

INSTR start sector ’Mdorﬂ--ﬂxﬂaﬂﬂﬂmﬂ vl

End sector

’ Sectorld--0x08004C00 - l

l Load parameters l l Save parameters l

Open project l

Save project file

l Save praoject to AT-Link H Close l

(4) After completing step 2/3, end users can get the MCU with programmed SLIB area (SLIB

status: enabled), and program the application code to MCU through online or offline

programming, as shown in Figure 47.

37

Ver 2.0.1

1?[? AT32F421 Security Library Application Note

Figure 47. End users program codes to MCU

[Artery ICP Programmer_V2.5.00 = = [+ DownLoad Form [ESREEE
File J-Link settings ~ AT-Link settings Target Language Help sLib status

Part Number: AT32F421CST7 FlashSize: 64KB ’l ?r ? 5“’
: Enable password Ox 55665566 Main Flash

AT-Link-EZ FW: V1.5.12

AT-Link | AT-Link SN: 6C850320000832905570502 ﬁ 45}5 jj Disable password Ox Start sector Sectord--0x08001000 =
Disable sLib INSTR start sector| Sector2--0x08003000 v
0

End sector Sector19--0x08004C00 ~
Memory read settings P Extra options
Address 0x 08001000 Read size Ox 00000D98 Data bits [g s vl I Read I " [Erasa the sectors of file size v] [7] Disable sLib before download
S Verify [C] Enable sLib I
File info
P o . = [*] Disable FAP before download
1 project_|Lhex 7000 DBDDDDDD—DBDDDSD?.DBDDSDDD—DBDDSB*F [[] Jump to the user program [T] Enable FAP after download

. [7] Write software serial number{SN) Basic access protection -

[F] Button free made

08010000
« n L3 1
K 00000001
Flash CRC] lFiIE CRC verify I [DownLoad
00000001
Flash info | File:project_11.hex
Address range: 1 Address range 1 checksum: 0x000A4D77 [Write user system data
Address 0 1 2 3 4 5 13 7 8 9 A B C D E F AL~
38 (13 |00 |20 |01 (S0 [o0 |08 [CB |57 |00 |08 |C3 |57 |00 [0B |8z
'0x08000010 c7 |57 00 |08 |A3 |57 00 |08 |41 |58 |00 |08 (00 (00 |00 |00 |E '
0x08000020 00 (00 |00 |00 |00 |00 [o0 (00 (o0 |00 |00 (o0 |CF |57 (00 |08
0x08000030 A7 |57 |00 (08 (00 |00 |00 |00 |CD |57 |00 (08 |D1 |57 (00 (08 | . | |
0x0B000040 18 (50 |00 |08 (1B (50 (0D (08 (1B |50 (0D (08 |A9 |57 |00 (08 |cP Start Download
[e [—— =

4.2 Integrate and program codes

Integrate the SLIB code of solution provider and the end user application code to an offline project,
and then download the integrated code to MCU through AT -Link offline programming. The process
is as follows:

(1) The solution provider handles the compiled project as aforementioned to get a slib.bin file;
(2) The solution provider uses ICP Programmer to generate an offline project and save it to PC.
Parameters (such as number of download, project files binding to AT -Link and enable FAP
after download) can be configured as needed. Save the offline project as follows.
Note: The offline projectis encrypted. To enhance security, the solution provider also can set the slib.bin file

as an encrypted slib.benc file and then add it to the offline project. In this case, the offline project can only be
used on the AT-Link with the corresponding encryption key.

2023.03.21 38 Ver 2.0.1

/|Q|_ ? AT32F421 Security Library Application Note

Figure 48. Set offline project

I AT-Link Setting [
AT-Link settings | AT-Link offline config settings |AT—Lir|k offline download status‘
Offine project | -] [petete
Project name slib_project Device |AT32fa21 | [aTszeazicers -
Noj—Fite-rrmme STt T orage loca... | |_Add
1 | ER.SLIB_READ_ONLY.bin 3480 08001000-08001D97
2 ER_SLIB_INST.bin 268 08003000-08003108
4 I] »
i
Erase option |Erase the sectors of file size ']
[7] Download times Download interface
[T] Encryption transmit Verify 7] Reset and run
[] Write user system data
|| Enable FAP after download [7] System memory AP maode
| software serial number(SN) | SPIM settings| sLib setti |
Enable sLib Main Flash
| i 55665566
slib enable password 0Ox Sorisoma ko Sectord-0xUB00L000 .
-] r]
[C Disable sLib before download INSTR sthrt sector [Seclwlz--uxuamsom v] [AT-Link project file settings [E=R
End sectbr [Sector1s--0x08004c00 + |
s (rarmdifs wnly ceedl i sparFed) TS
[Load parameters l l Save parameters] i
AT-Link SN : D4C354230040E56D01973402
This praject is only used once.
Open project Save project file [Save project to AT-Link] l Close] AT-Link AIN : 6922BF48CD19AT19
L
L F —————— = L —

(3) After obtaining the offline project, the end user should use ICP Programmer to open the project
file and add the application codes to the offline project; then save to PC or AT -Link, and
perform offline download. Figure 49 shows how to add the project file.

Note: To protect codes from being leaked or decoded, do not change other settings when adding code file to
the offline project, which requires the solution provider to configure the final settings in advance.

S S y 1]] . S
2023.03.21

39

Ver 2.0.1

,’|Q|- ? AT32F421 Security Library Application Note

Figure 49. Add project file

i -
{7 AT-Link Setting e =
-
AT-Link settings | AT-Link offline config settings |AT-Link offline download statusl
[
— 3 o]
|
Praject name slib_project Device |AT32F421 AT32F421CBTY
No. File name File size Address range(0x) Storage loci * [Add]
1 ER_SLIB_READ_ONLY.bin 3480 08001000-08001097 E |
2 — ER_SLIBINST.bin 268 08003000-08003108
k= [g T . [T8 Nonnnnnn. NeNNNeNT S
4 I | }
L
E size
erif Reset and run
e B - |
Enable FAP after download System memory AP mode
Basic access protection Key:(0x) DxA3
L | Software serial number(SN) | SPIM settings | sLib settings
|
I Enable sLib slib position Main Flash
sHB enable passward © Sectord--0x08001000
Disable sLib before dov INSTR start sector | Sectorl2--0x08003000
Slib elezlel e preawerd) 1 End sector Sector19--0x0B004C00
Load Save parameters N
| |
B ’ Open project] l Save project file Save project to AT-Link l l Close]
This project is only used once.
This project is only used at the specified AT-Link.
. - . — . S——— —— e
S - . S .. I S S L1 |
2023.03.21

.|
40 Ver 2.0.1

?r ? AT32F421 Security Library Application Note

5 Revision history
Table 2. Document revision history
Date Version Revision note
2021.11.2 2.0.0 Initial release.
2023.03.21 2.0.1 Modified screenshots.

2023.03.21 41 Ver 2.0.1

? AT32F421 Security Library Application Note

2023.03.21

IMPORTANT NOTICE — PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services; ARTERY assumes no liability for purchasers’ selection or

use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous representation
in any forms. If any part of this document involves third party’s products or services, it does NOT imply that ARTERY authorizes the use of the third
party’s products or services, or permits any of the intellectual property, or guarantees any uses of the third party’s products or services or intellectual

property in any way.

Except as provided in ARTERY’s terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty, relating to use and/or
sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a particular purpose (based on the

corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other intellectual property right.

ARTERY’s products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have specific
requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements on product function
safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other applications that may cause injuries, deaths
or property damages. Since ARTERY products are not intended for the above-mentioned purposes, if purchasers apply ARTERY products to these
purposes, purchasers are solely responsible forany consequences or risks caused, even if any written notice is sent to ARTERY by purchasers; in

addition, purchasers are solely responsible for the compliance with all statutory and regulatory requirements regarding these uses.
Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will immediately
cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and ARTERY disclaims any responsibility

in any form.

© 2023 Artery Technology -All rights reserved

42 Ver 2.0.1

	1 Overview
	2 Application principles
	2.1 Application principle of sLib
	2.2 How to enable sLib protection
	2.3 How to disable sLib protection
	2.4 Compile and execute program in sLib
	2.4.1 Setting interrupt vector table as sLib instruction area not allowed
	2.4.2 Correlation between sLib area and user code area
	2.4.3 Use and compile software floating-point arithmetic library

	3 Example applications of sLib
	3.1 Example application requirements
	3.1.1 Hardwar requirements
	3.1.2 Software requirements

	3.2 Overview
	3.3 SLIB protected code: FIR low-pass filter
	3.4 Project_L0: example for solution providers
	3.4.1 Generate execute-only code
	3.4.2 Compile security library address
	3.4.3 Enable sLib protection
	3.4.4 Project_L0 execution process
	3.4.5 Generate header file and symbol definition file

	3.5 Project_L1: example for end users
	3.5.1 Create user application project
	3.5.2 Add symbol definition file to project
	3.5.3 Call functions in SLIB-protected area
	3.5.4 Project_L1 execution process
	3.5.5 SLIB protection in debug mode

	4 Integrate codes and download
	4.1 Program codes separately
	4.2 Integrate and program codes

	5 Revision history

