?I_ ? BLE Application Note

ANOOQ77
Application Note

BLE Application Note

Introduction

This application note introduces how to use AT32WB415 wireless Bluetooth module to customize
BLE-related functions, how to execute communication between wireless Bluetooth module and
MCU, and how the MCU behaves after it receives a request from wireless Bluetooth module. In
addition, this application note outlines AT command protocol, and introduces how to add custom
services and characteristics to the Bluetooth module profile, as well as how to handle these
demand commands from the wireless Bluetooth module on the MCU side.

In addition, this document also introduces how to control wireless Bluetooth module functions
through AT command, allowing users to change the basic configurations on BLE side without
modifying the code.

Applicable products:

Part number AT32WB415xx

—
2022.11.16 1 Ver 2.0.5

_\)r ? BLE Application Note
Contents

1 INtroduction tO BIUBTOOTN . ..veeie e e 7

1.1 Generic ACCESS Profile (GAP)ooo et 8

O T T 5 TN o T o][9

1.1.2 Advertising and SCaN reSPONSE Acoeieiiiiieiiieiererere e 9

1.1.3 Broadcast NEtWOrk tOPOIOQY......uuuiiiieiiiiieiiie et e e e e e e e eeees 9

L 2 G AT T e e e e e e e e e e e e e e e aara—————_ 10

1.2.1 Connected NEtWOrK tOPOIOY. uuuuii e 10

O €7 I I 1 = 1 1=Y= U (o 11

1.2.3 Services and CharaCteriStICS. . ..uieeiie et e e e e e e e eans 11

1.3 SYSIEM FrAMEWOIK ..eeeiiiiiie ettt e et e e st e e e et e e e e s sae e e e e nnneeaeeeneeeeeeas 13

2 Add CUSTOM SEIVICES t0 BLE ... it 14

P22 R A Vo (o I o1 o) {1 (=2 SR0 (o o] o) (= ox SRR 14

2.2 Configure profiles iN PrOJECTccii i e e e e e s eaneeees 14

2.3 Add custom services to current software arChiteCtureccoovvvvvvveeeviieeeieee e 15

2.4 BLE interface deSCrPONccicuiiee et eciiiee et s e e e e e s e e e s naee e e s snneeeeeannnneeas 18

3 AT COMIMI AN et e e e e e et s 20

7% R [1o 1o 18 (o3 i (o) o IUUUTR U T TR RRTRTR 20

IV = 1 I i oTe) 001 0 1 =T [o [T 20

4 BLE QPPIICALION CASE ...eeiiiiiiiiiie et eans 25

o R o P10 VY F= T <Y TR 25

4.2 SOMWAIE TESOUICES ...eveeeeeee ettt et et e e e e et e e e e e e et e et e e e e e ee e e e e re e e e e e e e e e enaaees 25

o R |V (@8 o T 1= = 1T T R 25

4.2.2 BLE r€CEIVES FEAUESESciiiiiiiiiie ittt ettt ettt et tebabe bt bebebeeeeeennnnee 29

4.2.3 BLE SENUS FEOUESES....ciiieiiiiiiis it e et e e et e s s e e e e e et e s e e e e e e eaebn e e e e e e aeeeenennnnn 32

4.2.4 SOftWare OWNIOAereiiriiie ettt e e et et e e e e et e et e et eeaaas 33

/G Y SN I oX o] 01 0= Ta Yo B 4 110 Yo (ST 38

N | = Y15 0 1= 1 =T 1B . 0T = SR 41

O I O 7Y = O BT 01 (=] o = (o IR 41

2022.11.16 - - 2 - - Ver 2.0.5

/|?|_ ? BLE Application Note

N © Y = 1 01 =] = o =TT 45

5 VLS Lo T 1 1] A0 1 P 49

2022.11.16 3 Ver 2.0.5

1?[? BLE Application Note

List of tables

Table 1. Characteristics Of CUSIOM SEIVICEeviiiiiiiiiiiiiiiiiiiiee ettt beeenee 18
Table 2. Permission definitiONS...........oouiiiiiiiiiiiii ettt errernnenee 18
Table 3. AT command set list(send from MCU)ouuuiiiiiiiiiiees e e e e 20
Table 4. AT command set list(Send from BLE)ouiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeneeee 24
Table 5. DOCUMENL FEVISION NISIOTYcciiieiiii i e e e e e e e e s e e e e e e eeeannnas 49

2022.11.16 4 Ver 2.0.5

<[

5

BLE Application Note

List of figures

2022.11.16

Figure 1. Bluetooth core SysStem arChiteCIUreueiiiiiiiieeee e 8
Figure 2. AAvertiSing and SCAN FESPONSEuuuuuuuuurniuriritneneitnaaasasaa e saaaas s s asaaaassaaaasaesaaaasaaaaaaaaaaaaaens 9
Figure 3. Broadcast NetWOrK tOPOI0QY.......uuuiii et e e e e e e e e e aeennnns 10
Figure 4. Connected NETWOIK tOPOIOQY. ... uuuuuuuiiiiiiie e a e e e e e e e e e e e e e e e aeaeaeens 11
Lo (U TSI € A I I I = 1= T 1T 11
Figure 6. Profile arChiteCIUIE.........oiii i e e et e e e e e aaaaaas 12
Figure 7. SYStem framEWOIKiii i e e e e e e e e e et e e e e e e e anaana s 13
Figure 8. FIleS iN Profile ... e e e e e e e e aaaaea s 14
Lo [U =T TR 1 =TSN o =T o o S 15
Figure 10. INCIUAE PANS.......uuiiiiiiiiiiiiiiii s 15
Figure 11. Entry point for processing NEW task IDccooeeeiiiiiiiiiiii e e e e 15
FIQUIE 12. LISt Of SEIVICES. . .uuuiiiiiiiiiiiiiiiiiitet e s 16
Figure 13. List Of fUNCHONS........uuiii i e e e e e e e e e e aaana s 16
Figure 14. INitialize CUSTOM SEIVICEcivveiiiiiiiii e e et e e e e e e et e e e e e e eeeeeeennns 16
FIgure 15. A taSK IDccoiiiiiiiii i e e s e e e e e e et e e e e e e e e e et e a e e e e e e arra 16
Figure 16. Call custom_pri_itf geT() .. .ceeererme ettt e e e e e e eaaeaaans 17
Figure 17. Declare custom_prf itf get()....uueiii i 17
Figure 18. Open the macro for custom service and conditions listed as servo profile.................... 17
Figure 19. ATT database Of CUSIOM SEIVICEccoeuuiiiiiii i e e e e 18
Figure 20. Data SENAING FUNCLIONuuiiiiiiiiiiiiiiei e 18
Figure 21. Data receiving fUNCLON.uuiiii e e e et e e e e e eaaeaaans 19
Figure 22. AT-START-WBA415 BOAIU.........iiiiiiiiieiiiii et e e e et e e e et e e e aat s e e eaata e eaaes 25
Figure 23. Initialize LED fUNCLONcooviiiii i e e e e e e e aaanan s 26
FIQUIE 24, WITE LED ... iiiiiiieeiiiie ettt e e et s e e e e e e et ettt e e e e e e e e e aa st s e e eeeeeeanennnn s 26
FIQUIE 25. REAM LEDuuiiiiiiiiiiiiiiiiiiiiititiee et a e e e e e e e e e e e e e e e e e e s 27
Figure 26. Call GPIO write and read fUNCHION.iiiiiiiiiii e 28
Figure 27. Poll app_user_entry() iN MaiN [O0Puuuuuumiiiiii e 29
Figure 28. Decode reCeIVEd TaLAuuuuiiii et e et e e e e e e e eaera s e e e e e e e e eneeenn s 30
Figure 29. Select corresponding case, execute event and respond..........cooooeeeeiiiiiiiiieiineeeeeeeeeen, 31
Figure 30. Send Write 10 COMMANG..........uuuiiiiie et e e e e e ae e e e e e e e e eaeeennas 32
Figure 31. Send read IO command and send back dataooocuviiiiiieiiii e, 33
Figure 32. Host computer software connects to AT32WB415 Chip.......oovvvveiiiiieiiiieeici e, 34
FIQUIE 33. AQA BLE fllES ...ttt e e e e e e e e e e 35
- - 5 - T T verz05

?r ? BLE Application Note

Figure 34. Modify BLE download Start addresSsuuuuieiiiiiii e 35
Figure 35. Add MCU IlEScceeiiiiii et a e e e e e e e aa e e e e e e eeaseanan s 36
Figure 36. ClICK 10 dOWNIOAA.cii i e e e e e e e e e et e e e e e e ananaaas 37
Figure 37. Download & verification COMPIELION...........uiiiii i 37
Figure 38. SEarCh WBALS-G AT T ...ttt e e e e e e e e e e e et e s e e e e e e eaernan s 38
Figure 39. Connection status and OXC101 CharaCteriStiCS........uuiiiieeeiiriiiiiiini et eeee e 39
Figure 40. Read/WIte 10O dAtA........ccceeiiieiiiii i e e e e e e e e e e e e e e e e eaaa s 40
Figure 41. SWItCh tO tranSPar€nt MOUE.iiiiiei e e e e e e e e e e e eeeeeeannas 41
Figure 42. LightBlue CONNECS t0 WBA LSuuuiiiiiiiiiiiiiiiiiti e 42
Figure 43. LightBIUe WITLE QaLAceeeieeeiiiiiee e e e e e e e e e e s e e e e e e e eaeenn s 43
Figure 44. WBA415 prints the reCeived datauuuuiriiiii e 44
Figure 45. INput data to WBA LSccoieieiie e e e e e s e e e e e e et n e e e e e e e eaaaen s 44
Figure 46. LightBlue receives data from WBALS 45
Figure 47. Select USB HID Target........ccuuuiuiiiieeeiieeiei e e e e et s s e e e e e e et s e e e e e eeeaetnnanseeeeeeeennnnnns 46
Figure 48. Fill in data [ENQLN.........ueeiiiiiiiiiiii e e e 46
Figure 49. Received data on MODIIE APPcoi i e e e 47
Figure50. Send data to USB NOSt COMPULETuuuiiiiiiiiiiiiiie e 47
Figure 51. Received data in Input Report on the host computer..............ceeviiieiiiieeien e, 48

2022.11.16 6 Ver 2.0.5

<[

? BLE Application Note

2022.11.16

Introduction to Bluetooth

One key reason for the incredible success of Bluetooth® technology is the tremendous flexibility it
provides developers. Offering two radio options, Bluetooth technology provides developers with a
versatile set of full-stack, fit-for-purpose solutions to meet the ever-expanding needs for wireless
connectivity.

Whether a product streams high-quality audio between a smartphone and speaker, transfers data
between a tablet and medical device, or sends messages between thousands of nodesin a
building automation solution, the Bluetooth Low Energy (LE) and Bluetooth Classic radios are
designed to meet the unique needs of developers worldwide.

This application note focuses on Bluetooth Low Energy (hereinafter referred to as BLE) rather than
classic Bluetooth (hereinafter referred to as BR/EDR). For details about BR/EDR, please visit the
official website of Bluetooth SIG.

The Bluetooth Low Energy (BLE) radio is designed for very low power operation. Transmitting data
over 40 channels in the 2.4 GHz unlicensed ISM frequency band, the BLE radio provides
developers a tremendous amount of flexibility to build products that meet the unique connectivity
requirements of their market. BLE supports multiple communication topologies, expanding from
point-to-point to broadcast and, most recently, mesh, enabling Bluetooth technology to support the
creation of reliable, large-scale device networks. While initially known for its device communications
capabilities, BLE is now also widely used as a device positioning technology to address the
increasing demand for high accuracy indoor location services. BLE, which initially supports simple
presence and proximity features, now also supports Bluetooth® direction finding and will soon
support high-precision distance measurements.

The architecture of BLE is shown in Figure 1.

7 Ver 2.0.5

\I '"\-I - -
|— BLE Application Note
Figure 1. Bluetooth core system architecture
e A . —
e — — S
- ATT! =
GAP SMP GATT SDpP AMP Manager
CO—CO—COC O>C Oo—C >

1.1

2022.11.16

Channe! Manager

L2cap Resource
Manager

L2CAP

i HCI i1
___________ {’_?’E}—-—-—-{QCE{}—-----*’/ ACL :)._._._. C.'E - r’”_ '“w g e A “] _'_'_
Link Link
l Manager Manager AMF PAL
Device
Manager Baseband Resource Marjager
I AMP MAC
) Link
Link Controller Confroller
BR/EDR Radio and LE Radig (PHY) AMP PHY
BR/EDR Controller LE Controller AMP Controller (s}
A
Q:D C-plane and control services l:__CfE_:l Command/Event
ﬁ U-plane and data traffic 'iT_E”_CE) Asynchronous |ACL) data path

(500) Synchronous (SCO, e5CO) data path

In this application, the modified parts of code are all in the Host block and only LE controller block
is used, and the entire BLE system is implemented by the wireless Bluetooth module. The part that
will actually be modified is GAP and GATT in the Host block. The following sections will introduce
GAP and GATT and the influences of modifying the two small blocks.

Generic Access Profile (GAP)

GAP is an acronym for the Generic Access Profile, and it controls connections and advertising in
Bluetooth. GAP is what makes your device visible to the outside world, and determines how two

8 Ver 2.0.5

<[

5

BLE Application Note

1.1.1

1.1.2

1.1.3

2022.11.16

devices can (or cannot) interact with each other.
Device role

GAP defines various roles for devices, but the two key concepts to keep in mind are Central
devices and Peripheral devices.

Peripheral devices are small, low power, resource constrained devices. Central devices are usually
the mobile phone or tablet that you connect to with far more processing power and memory.

Advertising and scan response data

There are two ways to send advertising out with GAP, i.e., Advertising Data payload and Scan
Response payload. Both payloads are identical and can contain up to 31 bytes of data, but only the
advertising data payload is mandatory, since this is the payload that will be constantly transmitted
out from the device to let central devices in range know that it exists.

The scan response payload is an optional secondary payload that central devices can request, and
allows device designers to fit a bit more information in the advertising payload such a strings for a
device name, etc.

Figure 2. Advertising and scan response

ADVERTISING INTERVAL ADVERTISING INTERVAL ADVERTISING INTERVAL ADVERTISING INTERVAL
Peripheral ADVERTISING ADVERTISING SCAN RESPONSE| | ADVERTISING ADVERTISING
DATA DATA DATA DATA DATA
| | SCAN RESPONSE | | |
REQUEST
Central o

Broadcast network topology

While most peripherals advertise themselves so that a connection can be established and GATT
services and characteristics can be used (which allows for much more data to be exchanged in
both directions), there are situations where you only want to advertise data.

The main use case here is where you want a peripheral to send data to more than one device at a
time. This is only possible using the advertising packet since data sent and received in connected
mode can only be seen by those two connected devices.

By including a small amount of custom data in the 31 byte advertising or scan response payloads,
you can use a low cost Bluetooth Low Energy peripheral to send data one-way to any devices in
listening range, as shown in the figure below. This is known as Broadcasting in Bluetooth Low
Energy.

Once you establish a connection between your peripheral and a central device, the advertising
process will generally stop and you will typically no longer be able to send advertising packets out
anymore, and you will use GATT services and characteristics to communicate in both directions.

Ver 2.0.5

BLE Application Note

1.2

1.2.1

2022.11.16

Figure 3. Broadcast network topology

CENTRAL CENTRAL
BROADCAST

DEVICE \ TOPOLOGY / DEVICE
BLUETOOTH

CENTRAL ' LOW . CENTRAL

DEVICE ENERGY DEVICE
PERIPHERAL

CENTRAL CENTRAL

DEVICE DEVICE

GATT

GATT is an acronym for the Generic Attribute Profile, and it defines the way that two Bluetooth Low
Energy devices transfer data back and forth using concepts called Services and Characteristics. It
makes use of a generic data protocol called the Attribute Protocol (ATT), which is used to store
Services, Characteristics and related data in a simple lookup table using 16-bit IDs for each entry in
the table.

GATT comes into play once a dedicated connection is established between two devices, meaning
that you have already gone through the advertising process governed by GAP.

The most important thing to keep in mind with GATT and connections is that connections are
exclusive. It means that a BLE peripheral can only be connected to one central device at a time! As
soon as a peripheral connects to a central device, it will stop advertising itself and other devices will
no longer be able to see it or connect to it until the existing connection is broken.

Establishing a connection is also the only way to allow two-way communication, where the central
device can send meaningful data to the peripheral and vice versa.

Connected network topology

The following figure should explain the way that Bluetooth Low Energy devices work in a connected
environment. A peripheral can only be connected to one central device (such as a mobile phone) at
a time, but the central device can be connected to multiple peripherals.

If data needs to be exchanged between two peripherals, a custom mailbox system will need to be
implemented where all messages pass through the central device.

Once a connection is established between a peripherals and central device, however,

communication can take place in both directions, which is different from the one-way broadcasting
approach using only advertising data and GAP.

10 Ver 2.0.5

<[

5

BLE Application Note

1.2.2

1.2.3

2022.11.16

Figure 4. Connected network topology

. e
\ TOPOLOGY /
CENTRAL

PERIPHERAL DEVICE PERIPHERAL

DEVICE) (PHONE, TABLET, +—> DEVICE
COMPUTER)

PERIPHERAL PERIPHERAL

DEVICE DEVICE

GATT Transactions

An important concept to understand with GATT is the server/client relationship. The peripheral is
known as the GATT Server, which holds the ATT lookup data and service and characteristic
definitions, and the GATT Client (the phone/tablet), which sends requests to this server. All
transactions are started by the GATT Client, which receives response from the GATT Server.

When establishing a connection, the peripheral will suggest a “Connection Interval” to the central
device, and the central device will try to reconnect every connection interval to see if any new data
is available, etc. It is important to keep in mind that this connection interval is really just a
suggestion, though! Your central device may not be able to honor the request because it is busy
communicating with another peripheral or the required system resources just are not available.

The following figure should illustrate the data exchange process between a peripheral (the GATT
Server) and a central device (the GATT Client), with the main device initiating every transaction.

Figure 5. GATT Transactions

CONNECTION INTERVAL COMNECTION INTERWVAL CONNECTION INTERVAL

Peripheral [P P >
SLAVE ! SLAVE ! SLAVE N
GATT SEI'VEI' (Sends Response) : (Sends Response) ' (Sends Response)
l i l ! l
MASTER MASTER MASTER
Central (Sends Request) (Sends Request) (Sends Request)
GATT Client

Services and characteristics

GATT transactions in BLE are based on high-level, nested objects called Profiles, Services and
Characteristics, which can be seen in the figure below.

11 Ver 2.0.5

BLE Application Note

1231

Figure 6. Profile architecture

i Y
PROFILE
[SERVICE A
[CHARACTERISTIC |
[CHARACTERISTIC 1
[CHARACTERISTIC 1
- -~)
[SERVICE A
[CHAHACTEHISTIC]
[CHAH&CTEHISTIC]
L_L J_J

Profile

A Profile does not actually exist on the BLE peripheral itself; it is simply a pre-defined collection of
Services that has been compiled either by the Bluetooth SIG or by the peripheral designers. The
Heart Rate Profile, for example, combines the Heart Rate Service and the Device Information
Service. The complete list of officially adopted GATT-based profiles can be seen here: Profiles
Overview.

1.2.3.2 Service

Services are used to break data up into logical entities, and contain specific chunks of data called
characteristics. A service can have one or more characteristics, and each service distinguishes
itself from other services by means of a unique numeric ID called UUID, which can be either 16-bit
(for officially adopted BLE Services) or 128-bit (for custom services).

Afull list of officially adopted BLE services can be seen on the “Service” page of the Bluetooth
Developer Portal. If you look at the Heart Rate Service, for example, we can see that this officially
adopted service has a 16-bit UUID of 0x180D, and contains up to three characteristics, though only

the first one is mandatory: Heart Rate Measurement, Body Sensor Location and Heart Rate Control
Point.

1.2.3.3 Characteristics

2022.11.16

The lowest level conceptin GATT transactions is the Characteristic, which encapsulates a single
data point (though it may contain an array of related data, such as X/Y/Z values from a 3-axis
accelerometer, etc.).

Similarly to Services, each Characteristic distinguishes itself via a pre-defined 16-bit or 128-bit

12 Ver 2.0.5

https://www.bluetooth.com/specifications/specs/
https://www.bluetooth.com/specifications/specs/
https://btprodspecificationrefs.blob.core.windows.net/assigned-values/16-bit%20UUID%20Numbers%20Document.pdf

<[

? BLE Application

Note

UUID, and you're free to use the standard characteristics defined by the Bluetooth SIG or define

your own custom characteristics which only your peripheral and SW understands.

As an example, the Heart Rate Measurement characteristic is mandatory for the Heart Rate

Service, and uses a UUID of Ox2A37. It starts with a single 8-bit value describing the HRM data
format (whether the data is UINT8 or UINT16, etc.), and then goes on to include the heart rate

measurement data that matches this config byte.

Characteristics are the main point that you will interact with your BLE peripheral, so it is important
to understand the concept. They are also used to send data back to the BLE peripheral, since you
are also able to write to characteristic. You could implement a simple UART-type interface with a

custom “UART Service” and two characteristics, one for the TX channel and one for the RX

channel, where one characteristic might be configured as read only and the other would have write

privileges.
1.3 System framework
AT32WB415 actually consists of MCU and wireless Bluetooth module (BLE) that communicates
through UART interface. After receiving a request from remote APP, BLE obtains required
information from MCU or performs operations through AT command; or the MCU sends AT
command request through UART to change the configuration on BLE side. No matter which
direction the request is sent, users can expand AT command according to the needs to implement
various control methods.
Figure 7. System framework
HW Revision, SW
Revision, Serial
UART baudrate, number, etc.
BD name, Service Temperature, motor
UUID, etc. contro
; BLE 5'
Req.
BT Remote
i controller . APP
MCU | Y Rsp.
AT cmd req. | l-_ﬂ 'I-_cs :
AT cmd req. BT host i
_ AT emd rsp. ” (ARM 9) i
"~ ATcmd rsp. i
i S R e
Revision, Serial
number, etc.
OK or ERROR Temperature, motor
contro
Custom or extende
GATT profile, ex.
Temperature or
motor control
2022.11.16 - - 13 - = Ver205

<[

? BLE Application Note

2.1

2.2

2022.11.16

Add custom services to BLE

In this routine, there are already necessary services for GATT, and these services can be obtained
through remote APP, but users need to customize services to implement other desired functions. In
this application, a custom service is written for users. Users can also add other services following

this routine.

In addition, this is an ARM9 project, and users need to install Legacy Support for compilation.

Please download at www2.keil.com/mdk5/legacy/.

Add profiles to project

When adding a custom service, the following six files are required:
custom.c

custom.h

custom task.c

custom_task.h

app_custom.c

app_custom.h

custom.c and custom_task.c: sdk\ble_stack\com\profiles\custom\src

custom.h and custom_task.h: sdk\ble_stack\com\profiles\custom\api

app_custom.c and app_custom.h: projects\ble_app_gatt\app
Configure profiles in project

1. Open Keil, and then add custom.c and custom_task.c to “profile”.

Figure 8. Filesin profile

Put these files in the following directory (users need to create a folder):

—| 52 profile

£ j bass.c
bass.h
bass_task.c
diss.c
diss.h
diss_task.c
fffls.c
fls_task.c
oads.c
oads_task.c
prf.c
prf_utils.c

custom.c

A R | R A R G) W G

custom_task.c

14

Ver 2.0.5

file:///C:/Users/user/Documents/AN0077_AT32_BLE_Application_Note/Doc/www2.keil.com/mdk5/legacy/

1?[? BLE Application Note

2. Add app_custom.c to “app”.

Figure 9. Filesin app

E-gd app
_1 app-c
| app_batt.c
] app_dis.c
| app_fff0.c
] app_task.c
| app_oads.c
| _1 app_custu:um.cl

3. Add the corresponding profile path to “Include Paths” of Keil C/C++.

Figure 10. Include Paths

Folder Setup ? ey

Setup Compiler Include Paths:

o adkble_stackvcombprofiles\FEED anc -

A edkhle_stack\comprofiles\hoap

aedkble_stackcom®profiles hogpthogpd \api

o hadkble_stackcomprofiles hogpthogpdenc

o Mibs

e adkOble_stack comprofiles wechat \api

G edkble_stackcom®profiles wechat \src

Swvechat

o adkcble_stack com'profiles bas bass

G edkhle_stack\com®profiles bas bass api

G aedkble_stackcomprofiles dis'diss

o hadkOble_stack\comprofilesdis'dissapi

G sdkhle_stackcom®profiles \FFFOMapi
% Sadicble_stack comprofiles FFFD

G adkhle_stackcomprofiles oustomapi
% SadkCble_stackcom'profiles custom®snc

oK Cancel |

2.3 Add custom services to current software architecture

1. Findthe appm_msg_handler function in app_task.c, and add message case for custom ID
processing.

Figure 11. Entry point for processing new task ID

case (TASE _ID CUSTOM) :
i
/ Call the Health Thermometer Module
meg_pol = appm get handler (Zapp custom table handler, msgid, param, sSrc_id):;
} break:
S - . S [1 | T] T

2022.11.16 15 Ver 2.0.5

1?[? BLE Application Note
2. Find the appm_svc_listin app.c.
Figure 12. List of services
List of service to add in the database
enum appm svc_list
{
RPPM SVC CUSTCH,
RPPM SVC FFFO,
APPM SVC DIS,
APPM 5VC BATT,
APPM 5VC OADS,
APPM 5VC LIST S5TCP
3. Add alist of functions in app.c to create a database.
Figure 13. List of functions
f List of functions used to create the database
static const appm add svc func t appm add svc func list [APPM SVC LIST STOF] =
{
(appm add svc func t)app custom add customs,
(appm add svec func t)app fff0 add fffos,
(appm add svc func t)app dis add dis,
(appm add svc func t)app batt add bas,
(appm_add svec func t)app ocad add ocads,
4. Find appm_init function in app.c and add in app_custom_init function.
Figure 14. Initialize custom service
Device Information Module
app dis_init():
Battery Module
app batt_inic():
app oads_initi);
app _custom initi);
Add custom service ID to TASK_API_ID of rwip_task.h.
Figure 15. Add task ID
TASE_ID FCCOS5 = T4, f/FFCO PRCFILE SERVICE TASE
TASE ID FEEOS = 75,
TALSK ID CUSTOM = T&, F/BMIO Profile Serivice Task
f* 240 -» 241 reserved for Audio Mode 0 */
TASE ID AMO = 240, f/ BLE Audio Mode 0 Task
TASE _ID AMO HAS = 241, ELE Audioc Mode 0 Hearing Lid Service Task
TASE_ID INVALID = 0xFF, Invalid Task Identifier
S S L] L]
2022.11.16 16 Ver 2.0.5

1?[? BLE Application Note

6. Add customs_prf_itf_get function call to prf.c.

Figure 16. Call custom_prf_itf_get()

static const struct prf task cbs * prf itf get(uintlé t task id)

{
const struct prf task chs®* prf chs = NULL;

switch (EE TYPE GET (task id))
{
#if (BLE CUSTOM SERVER)
case TASK ID CUOSTOM:
prf cbs = customs_prf itf get():;
break:;
#endif f/ (BLE CUSTOM SERVER)

7. Add custom_prf_itf_get function declaration to prf.c.

Figure 17. Declare custom_prf_itf_get()

#if (BLE CUSTOM SERVER)
extern const struct prf task cbs* customs prf icf get(void):
#gendif S/ (BLE CUSTOM SERVER)

8. Add the following definitions to rwprf_config.h.

Figure 18. Open the macro for custom service and conditions listed as servo profile

/f/custom Profile server role
if defined(CFG_PRF_CUSTCM)
iefine BLE_CUSTOM SERVER 1

/// BLE_CLIENT PRF indicatesz if at least one client profile is present

(?T_E PROX MONITOR || BLE_FINDME LOCATOR || ELE HT COLLECTCR || BLE_EP COLLECTOR

BLE_CLIENT_FRF 0
// (BLE_PROX MONITOR BELE_FINDME LOCATOR ...)

BLE SERVER PFRF indicates if at least one server profile is present
f {:LE PROX REPORTER || BLE FINDME TARGET || BLE HT THERMOM || BLE EF SENSCOR
| BLE_TIP SERVER || nLE_-IR_.SENS(}R I nLE_DIS_SI’ER\;’ER I nLE_SF_SER'\"'ER

|

|| BLE_BATT SERVER || BLE HID DEVICE || BLE_GL SENSOR || BLE_RSC_SENSOR

|| BLE CSC_SENSOR || BLE CP _SENSOR || BLE LN SENSOR || BLE AN SERVER |,

|| BLE_PAS SERVER || BLE IPS_SERVER || BLE _ENV_SERVER || BLE WSC_SERVER
|| BLE UDS_SERVER || BLE BCS SERVER || BLE WPT SERVER || BLE FLX SERVER
|| BLE_FFFO_SERVER || BLE_FFEO SERVER || BLE FEEQ SERVER || [BLE_CUSIOM SERVER]
ine BLE SERVER PRF 1

ELE_FINDME TARGET ...)

The BLE_ CUSTOM_SERVER macro definition is used in custom.c, custom.h, custom task.c and
custom_task.h. The compiler can compile custom services only when this macro is open.

2022.11.16 17 Ver 2.0.5

?I_ ? BLE Application Note

2.4 BLE interface description

1. Custom service implements a readable and writable characteristic, and its UUID and related
attributes are shown in the following table.

Table 1. Characteristics of custom service

uuID Characteristic permission Data length to be sent/received
0xC101 Read/Write without response 1 byte

Set permissions in the ATT database of custom service.
'/ Full CUSTCH Database Description - Used to add attributes into the database

COMST sScruct attm desc cuscom att_db[CUSTOM IDX NB] =
{
ff Device Information Service Declaration
[CUSTCM_IDX 5VC] = {ATT_DECL_PRIMARY SERVICE, PERM(RD, ENABLE)}, 0, O},

// Manufacturer Name Characteristic

[CUSTOM IDX REMOTE IC CHAR]

'/ Manufacturer Name Characteristic Value

[CUSTCM IDX REMOTE IC VAL] = {ATT USER SERVER CHAR TEST1, PERM(RD, ENAELE) | PERM (WRITE COCMMAND, ENABLE),
PERM(RI, ENABLE), CUSTCM_ VAL MARX LEN},

Declaration
= {RTT DECL CHARACTERISTIC, PERM(RD, ENABLE), 0, O},

Figure 19. ATT database of custom service

'// Full CUSTCM Database Description - Used to add attributes into the database
const struct attm desc custom att db[CUSTCHM IDX NB] =
{
// Device Information Service Declaration
[COSTOM_IDX_SVC] = {ATT_DECL PRIMARY SERVICE, PERM(RD, ENAELE), 0, 0},

/ Manufacturer Name Characteristic Declaration

[CUSTOM_IDX REMOTE_IO_CHAR] = {ATT_DECL_CHARACTERISTIC, PERM(RD, ENABLE), 0, 0O},
f/ Manufacturer Name Characteristic Value
[CUSTCOM IDX REMOTE IC VAL] = {ATT_USER_SERVER_CHAR TEST1, PERM(RD, ENABLE) | PERM(WRITE_COMMAND, ENABLE),

PERM (RI, ENABLE), CUSTOM VAL MAX LEN},

The second parameter of the structure can set the permission of custom service or characteristic.
The permissions are defined as follows.

Table 2. Permission definitions

Code symbol Description

RD Read

WRITE_REQ Write
WRITE_COMMAND Write without response
NTF Notification

IND Indication

2. Data sending function is located in custom_task.c, which is implemented by using
gattc_write_req_ind_handler() function.

Figure 20. Data sending function

static int gattc write req ind handler (ke _msg id t const msgid, struct gattc write req ind const *param,
ke_task id t const dest_id, ke _task id Tt const src_id)
{
sTruct gattc_write_cfrr. # cfm;
uint8 t status = GAP_ERR NO ERRCOR:
//S5end AT command
UART_SEND DATA (AT_CMD IO SET, param->value[0]}):

cfm = KE_MSG ALLOC (GATTC WRITE CFM, src_id, dest_id, gattc_write_cfm):
cfm->handle param->handle;

cfm-»status status;

ke msg_send (cfm):

return (KE_M5G CONSUMED) ;

2022.11.16 18 Ver 2.0.5

AR

BLE Application Note

2022.11.16

3. Datareceiving function is located in app_custom.c, which is implemented by using
custom_value_req_ind_handler() function. More cases can be added through switch in a similar

way.

Figure 21. Data receiving function

static int custom value req ind handler (ke msg id t const msgid,

struct custom value req ind const *param,
ke_task id t const dest_id,

ke_task id t const src_id)

Initialize length
uinté t len = O:
Pointer to the data

uintg t *data = NULL;

at_rsp content* rsp content;
//rxdata buffer len = 0;

S § Check requested wvalue
switch (param->value)

{
case CUSTCOM REMOTE IO STATUS:
{
S AT command
UART SEND DATA (AT CMD IO GET);
f{ Wait for response
rsp_content = at_wait_ for rsp():;
' Set information
len = APP CUSTCM EEMOTE IO LEN;
if(rsp content->data[4] == 0x31)
{
data = (uint&_t *)APP CUSTOM REMOTE IO HIGH:
el=e
{
data = (uint&_t *)APP CUSTOM REMOTE IO LOW;
+ break;
default:
ASSERT ERR(0):
break;

19

Ver 2.0.5

o[- BLE Application Note

3.2

AT command

Introduction

The Hayes command set (also known as the AT command set) is a specific command language

originally developed for the Hayes Smartmodem 300. The command set consists of a series of

short text strings that can be combined to produce commands for operations such as dialing,

hanging up, and changing the parameters of the connection. The vast majority of dial-up modems

use the Hayes command set in numerous variations.

The Hayes command set can subdivide into four groups:

1. Basic command set: A capital character followed by a digit. For example, M1.

2. Extended command set: An "&" (ampersand) and a capital character followed by a digit. This
extends the basic command set. For example, &M1.

3. Proprietary command set: Usually starting either with a backslash ("\") or with a percent sign
("%"); these commands vary widely among modem manufacturers.

4. Register commands: Sr=n, where “r” is the number of the register to be changed, and “n” is the
new value thatis assigned.

BLE command

In this application note, only the basic command set is used. There are also some important

characters for modem initialization.

1) AT - "Attention": Each command string is prefixed with "AT", and a number of discrete modem
commands can be concatenated after the "AT".

2) Z-reset: Resetthe modem to its initial state.

3) (acomma): Pause the software for one second, or many seconds if there are multiple commas.

4) "M - Send a Carriage Return character to modem. It is a control character (transmitting this
character is actually transmitting a byte, and the contentis CR in ASCII).

AT command set lists implemented in this application are shown below.

Table 3. AT command set list(send from MCU)

Send from MCU | Response from BLE Note
Wrong command or ERROR When the BLE receives a
command not supported command not supported or

wrong command, it returns
ERROR, and MCU/BLE will
send a new AT command.
E.g., If MCU sends a wrong
command ATT, BLE will
return ERROR.

Startup test: AT AT OK A. It is usedto confirm
whether the BLE is
ready.

B. After receiving this
command, MCU
returns OK and
confirms to start AT

2022.11.16 20 Ver 2.0.5

BLE Application Note

command, thus to

avoid MCU sending AT

command before the

completion of BLE

power-on initialization,

causing malfunctions.
E.g., Testto confirm that
BLE is in AT command
mode: if MCU sends AT,
BLE will return OK.

Set UART
baud rate
and save in
Flash:
AT+BAUD

9600bps

AT+BAUD1

OK9600

19200bps

AT+BAUD2

OK19200

38400bps

AT+BAUD3

OK38400

57600bps

AT+BAUD4

OK57600

115200bps

AT+BAUDS

OK115200

A. Default baud rate:
9,600bps
B. After BLE respondsto
the baud rate, the new
baud rate is saved in
Flash, and BLE
communicates with
MCU at the new baud
rate. Power on again
and reset, BLE will
continue
communication at the
set baud rate
C. After BLE respondsto
the baud rate, it
immediately switches
to the new baud rate
for communication.
E.g., When the baud rate is
set to 115,200bps, MCU
sends AT+BAUD5 and BLE
returns OK115200; then
BLE communicates with
MCU at 115,200bps. Power
on again and reset, BLE will
continue communication at
115,200bps.

Set UART
baud rate
and save in
SRAM:
AT+BAUDS

9600bps

AT+BAUDS1

OK9600

19200bps

AT+BAUDS2

OK19200

38400bps

AT+BAUDS3

OK38400

57600bos

AT+BAUDS4

OK57600

115200bps

AT+BAUDS5

OK115200

A. After BLE respondsto
the baud rate, it
communicates with
MCU at the new baud
rate. Power on again,
BLE will communicate
at the baud rate saved
in Flash.

2022.11.16

21

Ver 2.0.5

_\)r _\) BLE Application Note

B. After responding to the
baud rate, BLE
communicates with
MCU at the new baud
rate immediately.

E.g., When the baud rate is

set to0 19,200bps, MCU

sends AT+BAUDS2 and

BLE returns OK19200; then

BLE communicates with

MCU at 19200bps. Power

on again and reset, BLE will

communicate with MCU at
the baud rate saved in

Flash.
Modify BD name and save | AT+NAMEXxXxx OKxoxxx A. Default name:
in Flash: SerialSPP
AT+NAME B. After BLE respondsto

the BD name, the new
BD name is saved in
Flash, and BLE
continue advertising
with the new BD name.
Power on again and
reset, BLE will
continue
communication with
the new BD name.
C. Support upto 20-char
BD name.
E.g., When BD name is
changed to Serial-GATT,
MCU sends
AT+NAMESerial-GATT and
BLE returns OKSerial-
GATT,; then BLE advertises
with the name of Serial-
GATT. Power on again and
reset, BLE will continue
using the name of Serial-

GATT.
Modify BD name and save | AT+NAMESxxxx | OKxxxx A. After responding to the
in SRAM: BD name, BLE
AT+NAMES continue advertising

with the new BD name.

2022.11.16 22 Ver 2.0.5

BLE Application Note

Power on again and
reset, BLE will
continue
communication with
the BD name saved in
Flash.
B. Supportupto 20-char
BD name.
E.g., When BD name is
changed to Serial-GATT,
MCU sends
AT+NAMESSerial-GATT
and BLE returns OKSerial-
GATT; then BLE advertises
with the name of Serial-
GATT. Power again and
reset, BLE will use the BD
name saved in Flash.

Set 100ms AT+ADVI1 OK100 A. Default advertising
advertising | 250ms AT+ADVI2 OK250 interval: 100ms
intervaland | 500ms AT+ADVI3 OK500 B. After BLE returns OK,
save in 1600ms AT+ADVI4 OK1600 the new advertising
Flash: 3200ms AT+ADVI5 0OK3200 interval is saved in
AT+ADVI Flash and used for
advertising packet.
Power again and reset,
the new advertising
interval will be used.
E.g., When the advertising
interval is set to 100ms,
MCU sends AT+ADVI1 and
BLE returns OK100; then
the advertising interval is
100ms. Power again and
reset, BLE will continue
using the advertising
interval of 100ms.
Set 100ms AT+ADVIS1 OK100 After BLE returns OK, the
advertising | 250ms AT+ADVIS2 OK250 new interval is used for
intervaland | 500ms AT+ADVIS3 OK500 advertising packet. Power
save in 1600ms AT+ADVIS4 0OK1600 on again and reset, the
SRAM: 3200ms AT+ADVIS5 0OK3200 advertising interval saved in
AT+ADVIS Flash will be used.
E.g., When the advertising
interval is set to 100ms,

2022.11.16

23

Ver 2.0.5

][R

BLE Application Note

2022.11.16

MCU sends AT+ADVIS1
and BLE returns OK100;
then the advertising interval
is 100ms. Power on again
and reset, BLE will use the
advertising interval saved in
Flash.

Read Flash:
AT+RFLASH

AT+RFLASHad

OKadda

A. Default 256 byte data
value: FF

ad(address): 1char

da(data): 1 char

B. BLE returns OK
followed by address
and the corresponding
data.

E.g., When reading the data

of “address:00”, MCU sends

AT+RFLASHO00 and BLE

returns OKOOFF. The data

read from “address:00” is

FF.

Write Flash:
AT+WFLASH

AT+WFLASHad,
da

OKadda

A. Default reserved for
MCU accessing 256
byte data: FF

ad(address): 1char

da(data): 1 char

B. BLE returns OK
followed by address
and the corresponding
data.

E.g., When writing data:AA

of “address:00”, MCU sends

AT+WFLASHOOAA and BLE

returns OKOOAA. The data

written to “address:00” is

AA,

24

Table 4. AT command set list(send from BLE)
Send from BLE | Response from MCU Note
Read remote 10 level: AT+IOGET OKIOx X=0or1l.
AT+HIOGET X=0: low level
X=1: high level
Write remote 10 level: AT+IOSETX OKIOx X=0orl.
AT+IOSET X=0: low level
X=1: high level

Ver 2.0.5

/|Q|_ ? BLE Application Note

4 BLE application case

This application case shows how to use BLE to operate AT32WB415 on smartphones, including 10
control and IO data reading.
4.1 Hardware

1) AT-START-WB415 Board
2) Smartphone with LightBlue APP
3) Micro USB cable

Figure 22. AT-START-WB415 Board

v aEe Ty b o e e
. 8 che2 e SR

~ H J DR 20 50, At b oy A

g g I AT-Link USB® ¥ CLR TG R Rrer O

j AT 3 E2-V2.0 " il g

T2
GND
0l
rg.?sgm'
&= .
2,530 ;
L=} S
R19 ik _
' € Dc37 1
- 228 ‘_,_,"-' :
5 : 2 < G X) =7 Hoe
| - Dad M |re3CmlE HLeos, == &858z - S
.5 ©¢ r22fm]E Jleos ~ - L () § “SHigen o F
[l - |r20f=mIE FtLeo2 AN P $TC230. L A,
.|l® i 3E J—-“. ;_'-._2r1r_:3r1u§;‘-.~
. |l® (0207} EEROC22U) ° c2n
(1] ¢33 ci8 NI
J4 eEEE ©
A : SC WS |
ol ‘ 3 o1
‘. if_llllll F‘H_‘» l
® %r‘gr‘%%zqﬁﬁ.’% 2828 W e
. EEXEEXE O e ‘@i miC30
el o Em,Rm
P /\lg @R37
81 vk 82
6‘6]15- ° O[
aio L ,Zoio
MCU BLE
Reset Reset

4.2 Software resources
4.2.1 MCU operations

IO control and data reading refer to the operations on MCU peripherals. In the code, users need to
complete initialization and write functions to be executed after receiving the command. This
application note takes GPIO control as an example, and users can follow this architecture for
subsequent development.

2022.11.16 25 Ver 2.0.5

:'=/| ?I_

5

BLE Application Note

1. First, configure the corresponding GPIO. In this case, LED2(PB7) on AT-START-WB415 is
used as the controlled pin.

Figure 23. Initialize LED function

287
268
269
21e
211
212
213
214
215
216
217
218
219
228
221
222
223
224
225
226
227
228
229

2022.11.16

J,-'#*
* @brief configure led gpio
* @param led: specifies the led to be configured.
* @retval none
*f
vold at32 led init(led type lad)
1

gpio init type gpic init struct;

/* enable the led clock */
crm_periph_clock enable(led gpio crm _clk[led], TRUE);

/* set default parameter */
gpio default para_init{&gpio init struct);

/* configure the led gpio */

gpio init struct.gpio drive strength = GPIO DRIVE STRENGTH_STRONGER;
gpio _init struct.gpio out type = GPIO OUTPUT_PUSH PULL;

gpio init struct.gpio mode = GPIO MODE OQUTPUT;

gpio _init struct.gpio pins = led gpio pin[led];
gpio_init_struct.gpio_pull = GPIO_PULL_HNOMNE;

gpio init(led gpio port[led], &gpic init struct);

2. Write the code to read and write LED.

Figure 24. Write LED

248 void at32 led on{led type led)
241 {
242 if(lad > (LED_NUM - 1))
243 return;
244 if{led gpio pin[led])
245 led gpioc port[led]-»clr = led gpic pin[led];
246}
257 void at32 led off(led type led)
258 {
259 if(led > (LED_NUM - 1))
268 return;
261 if({led_gpio pin[led])
262 led gpioc port[led]-»scr = led gpioc pin[led];
263}
1 1 . I - e ——

26 Ver 2.0.5

AR

BLE Application Note

— e—
2022.11.16

Figure 25. Read LED

283
204
285
286
2087
288
2089
218
211
212
213
214
215
216
217

flag status gpioc input data bit read(gpio type *gpio x, uintls T pins)

1

flag status status = RESET;

if(pins !
{

status

h

glse

{

status

{pins & gpio x->idt))

RESET;

5ET;

return status;

27

Ver 2.0.5

:'=’| ?I- ?

BLE Application Note

3. Call the at_cmd_handler function in the main loop to decode the AT Command and perform
corresponding operations for different commands.

Figure 26. Call GPIO write and read function

154
155
156
157
158
154
168
161
162
163
164
165
166
187
168
169

[~

HH KB H B H

;BB WK

wold at_cmd_handler{woid)
uimt®_t msg_id =
if{recv_cmp_flag

SI1ZEOFMSG-1, i

== 5ET)

{
for(i = 8; 1 <= SIZEOFM3G; i++)
{
if{memcmp(recv_data, at_cmd_list[i].at_cmd_string, strlen{recv_data}) == B)
{
msg_id = i;
break;
}
switchiat_cmd_list[msg_id].msg_id)
{
case AT_CHMD_IDSETE:
{
primtf{ "AT_CMD_LOSET@\rin");
at3i_led_off(LEDZ);
at_cmd_send(AT_RESULT_OKA);
break;
case AT_CMD_IOSETL:
{
primtf{"AT_CMD_IOSET1\r\wn");
at3z_led_oni(LEDZ);
at_cmd_send({AT_RESULT_OK1);
break;
case AT_CMD_IDGET:
{
primtf{"AT_CMD_IOGETYr\n"™};
if{gpio_output_data bit_read(GPIOB, GPIO_PINS_7))
{
at_cmd_send(AT_RESULT_OK1);
}
else
{
at_cmd_send(AT_RESULT_OK8) ;
}
break;
default:
{
primtf{"AT_CMD_ERROR\Fr\n"™};
at_cmd_send({AT_RSP_ERROR) ;
break;
}

recv_cmp_flag = RESET;
memset{recv_data, 8, strlen{recv_data));

— e—
2022.11.16

—
28 Ver 2.0.5

AR =R BLE Application Note

4.2.2 BLE receives requests

The command processing on Bluetooth side mainly relies on the app_user_entry() function in
app.c. After the uart_rx_done flag is set, entry the at_result_to_prefix() to perform decoding to
determine whether the received data is AT command and determine the corresponding command
number; then entry the corresponding case according to the command number, execute the
corresponding request event, and then respond to MCU side.

Figure 27. Poll app_user_entry() in main loop

while (1)

{/schedule all pending events
rwip schedule ()
app_user entry():

f Checks for sleep have to be done with interrupt disabled

GLOBAL INT DISABLE():
ocad updating user section pro();
if (wdt disable flag==1l)

{
wdt_disable ()

2022.11.16 29 Ver 2.0.5

AR

BLE Application

Note

— e—
2022.11.16

Figure 28. Decode received data

if (uart_rx done == 1)

i

ff uint8_t baud change = 0;

uint8_t len;

uinti t rsp code;

ffuint8_t idx:

extern uintf t rxdata buffer len;

at prefix t *prefix cmd;

uintd t w_flash buf[2]:

fflen = strlen((char*)rxdata buffer):
len = rxdata buffer len;

rxdata buffer len = 0;
if (rxdata buffer[len-1] == "\n')
{

S /AT command finish

J/UART_PRINTF ("finish\r\n"):

memcpy (&AT cmd buf[recv AT cmd idx],rxdata buffer,len);
EEUART_PRINTF("%s\r\n",AT_cmd_baf]:

AT cmd len += len;

recv_AT cmd idx = 0;

H

else

{
S /command not finish
memcpy (AT cmd buf[recv AT cmd idx],rxdata buffer,len):
recv AT cmd idx = len;
AT cmd len += len;
uwart_rx done = 0;
!!UART_PRINTF("nnt finish\r\n");
return;

H

J//dispatch AT-COMMAND

prefix cmd = at_result to prefix((char*)AT cmd buf, AT_cmd_len]:l
Uart Ix_done = U;
without prefix len = AT cmd len-prefix cmd->prefix len;

30

Ver 2.0.5

1?[? BLE Application Note

Figure 29. Select corresponding case, execute event and respond

switch(prefix cmd->code)
{
case AT RESULT AT
S fdo nothing

Fifdef used BE3I432 MCO
ULART =EHE_EETEI”E“J,
Fendif
UART SENWD DATA ("%s\r\n",get at rsp(rsp code));
break:;
case AT RESULT EAUDL
UART PRINTF ("recv AT EESULT BAUD1A\r‘\n");
Fifdef used BE3432 MCO
URET SEND DATR “?”J,
Fendif
|URART SENWD DATA ("$s\r\n",get at rsp(rsp code));: |
cpu_delay(15);
wart init(3600);
w_flash buf[0] = 1;
save parameter to BE3432 USED FLASH AREA (TAG BAUD,w flash buf):

break:;
case AT RESULT EAUDZ
_fdnf uszed BE3432 MCU
URET SEND DATR “?”J,
endif
UART SEND DATA("%S\I\ﬂ”,gEt at_rspirsp cnde]]J
cpu_| EElﬂyTlE],
w_flash buf[0] = 2;
save parameter to BE3432 USED FLASH AREA (TAG BAUD,w flash buf):

uvart initc (12200} ;

T

break:;

case AT RESULT EBAUDS
Fifdef used BE3I432 MCO

URRT SEND DATRA("E"™):

Fendif
IUART SEND DATL ("%=s\r\n",get at r3p(rap cnde]]J
cpu_| EelayTlE] H —
w_flash buf[0] = 3;
save parameter to BE3432 USED FLASH ARERA (TAG BAUD,w flash buf):
uart init (38400):

break:

e ———— - L]
2022.11.16 31 Ver 2.0.5

AR =R BLE Application Note

4.2.3 BLE sends requests

The parts that send a request are added according to the implementation of characteristic. In this
application, they are read remote 10 level and write remote |O level. Both parts send AT command
to MCU through the UART_SEND_DATA() function. The “write” in this application is set as “Write
without response” in Profile, so there is no need to wait for the response from MCU. As for “read” in
this application, the value should be added to the response of GATT, so users must wait for the
MCU to respond. In the code, the at_wait_for_rsp() function is used, and wait to obtain the
responded data. After obtaining the data from MCU, send the data to the smartphone through the
ke_msg_send() function.

Figure 30. Send write IO command

static int gattc write reqg ind handler (ke _msg id t const msgid, struct gattc write reg ind const *param,
ke_task id t const dest_id, ke_task id t const src_id)
{
struct gattc write cfm * cfm;
uint8_ t status = GAP_ERR NO ERROR:
J/Send AT command
IUA_R'E SEND DATZ (AT CMD IO SET, para:r.—>*.ral'.1e[2']].:|

cfm = KE_M5G ALLOC (GATIC WRITE CFM, src id, dest_id, gattc_write cfm);
cfm-rhandle = param->handle;

cfm->»status = status;

ke m=g send(cfm);

return (KE_MSG COMSUMED) ;

2022.11.16 32 Ver 2.0.5

AR =R BLE Application

Note

Figure 31. Send read 10 command and send back data

4.2.4

2022.11.16

static int custom value_ req_ind handler (ke_msg_id t const msgid,
struct custom value reg ind const *param,
ke task id t const dest id,
ke_task id t const src_id)

/ Imitialize length
wintg_t len = 0;

/ Pointer to the data
uint8 t *data = NULL:;

at_rsp content® rsp content;

[/ Check requested walue
switch (param-—>value)
{
case CUSTOM REMOTE I0Q STATUS:
{

/i AT command
URRT SEND DATA (AT CMD IO GET):
/ Wait for response
rsp content = at wait for rsp():
'/ Bet information
len = RPP _CUSTOM REMOTE_IC LEN:

if(rsp_content->data[4] == 0x31)
{
data = (uinti&_t *)APP CUSTCM REMOTE IO HIGH:
else
{
data = (uintg&_t *)APF _CUSTCM REMCOTE IO LOW:
} break;
default:
ASSERT_ERR(0) ;
break;

S/ BAllocate confirmation to send the value

struct custom value cfm *cfm value = KE_MSG ALLOC DYN (CUSTCM VALUE CFM,
src id, destc_id,
custom value cfm,
len) ;

/ Set parameters
cfm wvalue->»value = param->value;
cfm wvalue->length = len;
if {(lemn)
{
/ Copy data
memcpy (&cfm value->data[0], data, len);

/ Send message
Ike_msg_send(cfm_valuej;I

return (KE MSG COMSUMED):

Software download

After compiling the code of Bluetooth and MCU, download software to WB415 board through ICP
Tool. Users need to import wb415_ble_app_merge.bin (BLE side code) and Template.hex (MCU
side code). The download process is as follows:

1.
2.

Connect AT-Link to PC via USB.

chip.

33

Open the host computer software Artery ICP Programmer Tool and connect to the AT32WB415

Select BLE side code. Click the “Add” button in “File info” and select files to be downloaded.
The default path after BLE side code compilation is “output->app” of the project. Select

Ver 2.0.5

BLE Application Note

— e—
2022.11.16

wh415 ble_app_merge.bin, and enter the download start address “0x00000000”.
Select MCU side code. Click the “Add” button in “File info” and select files to be downloaded.

The default path after MCU side code compilation is the “Objects” folder of the project. Then,
select Template.hex.

Click to download.

Figure 32. Host computer software connects to AT32WB415 chip

After the download is complete, the host computer software will prompt download & verification
completion.

File J-Link settings ~ AT-Link settings Target BLE Module Language Help

i Part Number: AT32WB415CCU7-7 FlashSize: 256KB /| Qr QY
Disconnect i
AT-Link | AT-LinkSN: SF406020004017800A974C02 (WinUSE) I&' % j]

AT-Link-EZ BLE FW: V2.1.0

Eluetootl dul ~ad

Memory read settings

Address Ox 00000000 Read size Ox 0001DE10 Data bits [8 bits 'l ’ Read I
File infe
MNo. File name File size Address range(0x) Add
Flash CRC] I File CRC verify] I DownLoad

Flash info | Download File Info

13:39:55 : AT-Link connection is successful. -

13:39:56 : Part Number: AT32WB415CCU7-7 FlashSize: 256KB
13:39:56 : Target device connection successfully!

Current Time : 2022/7/8 13:42:01 All Rights reserved by Artery Technology Co.Ltd

34

L
Ver 2.0.5

AR

BLE Application Note

Figure 33. Add BLE files

File J-Link settings ~ AT-Link settings Target BLE Module Language Help

Part Number: AT32WB415CCU7-7 FlashSize: 256KB __=1 ?r ?
AT-Link-EZBLE FW:V2.1.0

AT Link SN: 9F406020004017800AS74C02 (WinUSB) ﬂ 4%: jj

Bluetooth module connected

Memory read settings

Address 0x 00000000 Read size Ox 0001DE10 Data bits ’S bits v] ’ Read]
File info
No. File name File size Address range(0x) Add
Delete

(i 115 =

@O" . « ble_app_gatt » output » app - ‘ 4 ‘ L__-'.guf‘épp el |
— T e —
HR Y EmEAdsE =~ 0 @
‘e ~ EW B EE E-Sii) Fuh
‘ﬂ || wb415_ble_app.bin 2022/7f1 14:55 BIN 30i4 2
. | || wb415_ble_app_app.bin 2022/7/1 14:55 BIN % 2
E | || wb415_ble_app_merge.bin 2022/7/1 14:55 BIN 34 13:
|| wba15_ble_app_stack.bin 2022/7/1 14:55 BIN 37f4 12
=
=
E - 1l I r
TFEN): whbd15_ble_app_merge.bin - lAH Flles(*.*) ']
[o || = |

C!— —————— — ——

Figure 34. Modify BLE download start address

-
{7 Add address = =

Download start address(0x) : DDODDODD'

(BLE start address : Ox00000000)

— e—
2022.11.16

35

Ver 2.0.5

AR % BLE Application Note

Figure 35. Add MCU files

File J-Link settings ~ AT-Link settings Target BLE Module Language Help

i Part Number: AT32WB415CCU7-7 FlashSize: 256KB ’l?r _\)
Disconnect o

AT-Link-EZ ELE FW:V2.1.0

AT-Link SN: 9F406020004017800A974C02 (WinUSE) ﬂ 4._:}: jj

Bluetooth module connected

Memory read settings

Address Ox 00000000 Read size Ox 0001DE10 Data bits [8 bits vl [Read]
File info

No. File name File size Address range(0x)

1 wh415_ble_app_merge.bin 139024 00000000-00021F0F

7 T ===

mv| . « atside » mdkv5 » Objects - L‘,J HEE Objects
m— — _ — e —

|R v FEuMsE =~ O @
ERe : A =m e
B | Template.axf 2022/6/29 17:53 AXF 30
E || Template.build_log.htm 2022/7/5 10:48 Chrome HTML D...
EH | || Template.hex 2022/6/29 17:53 HEX zzi%
J | Template.htm 2022/6/29 17:53 Chrome HTML D...
_| Template.lnp 2022/6/29 17:53 LNP 37{4
— & Template.sct 2022/6/29 17:53 Windows Script ...
e | template_ble_transparent_mode.dep 2022/7/5 10:48 DEP X7{%
& || tp_mode.crf 2022/6/29 17:53 CRF 3244
= || tp_moded 2022/6/29 17:53 D 30
3 | | tp_mode.o 2022/6/29 17:53 O i 2
P=ad| < [[3
SIHE(N): Templatehex - [AII Flles(*.*) ']
[77 | [= |

— e— — e—
2022.11.16 36 Ver 2.0.5

BLE Application Note

Figure 36. Click to download

- 1 X
File J-Link settings AT-Link settings Target BLE Module Language Help
sLib status
N sLib status: Disable
Enable password Ox sLib position: Main Flash
Disable password Ox Start sector -
Disable sLib DATA start sector -
End sector A
Extra options
. uetooth module
i Bl h modul
Erase options c
Erase options
[Erase the sectors of file size '] l :
Erase main space A
Verify Custom encryption key for verify: [7] Disable BLE FAP before download
[7] Enable BLE FAP after download
7] Disable sLib before download] Write software serial number(SN)
[C] Enable sLib Write address 0 08010000
l Current SN Ox 00000001
[] Disable FAP before download
Increase step Ox 00000001
] Enable FAP after download "
Jump to the user program
Access protection - o P [P
[7] Button free mode
[] Write user system data
Use stem data file path
whb415_ble_app_merge.bin File downloading......
|
|l | 55%
Start Download Cancel Close
Current Time : 2022/7/8 13:49:48 All Rights reserved by Artery Technology Co.Ltd
= 4

Figure 37. Download & verification completion

Template.hex Verification successfully ! !

— e—
2022.11.16

37

Start Download Cancel
Y T r'Tr v 1 " 1 T° EE—— -

L
Ver 2.0.5

:'=’| ?I- ?

BLE Application Note

4.3

— e—
2022.11.16

AT command mode

It is recommended to install a Bluetooth tool/software with Bluetooth device operation function on

the smartphone. This application note takes LightBlue APP as an example.

Perform the following steps to verify that the AT command mode in this application works properly.
1. Open LightBlue APP and find the Bluetooth device called WB415-GATT and then connectto it.

Figure 38. Search WB415-GATT

Enjoying LightBlue?
Learn about our insights into BLE

Q Search Peripherals By Name

Peripherals Nearby

1l Galaxy Watch (OE7C) LE

- No services

Sort LightBlue Filter

Ll WB415-GATT

-77 1 service

Al Unnamed
-93 1service

Al Unnamed
99 No services

Al Unnamed
-98 No services

Al Unnamed
-70 No services

Al Unnamed

@ ©® B 9

Peripherals Virtual Devices Log Learn

<

Settings

38

L
Ver 2.0.5

A R[-RY BLE Application Note

2. Check to confirm that it is connected. Click UUID:CODE and confirm that the OxC101 is set. The
0OxC101 is the service and characteristic used in AT command mode.

Figure 39. Connection status and 0xC101 characteristics

< Back Peripheral Clone

WB415-GATT

UUID: B4F39B81-64B6-8854-58EC-AD321CCE989C

Connected

ADVERTISEMENT DATA Show

UUID: FOOO

OxF002
Properties: Write Without Response

OxFOO1
Properties: Notify

UUID: CODE

OxC101

Properties: Read Write Without Response

Device Information

Manufacturer Name String
BEKEN SAS

Model Number String
BK-BLE-1.0

Serial Number String

10001F

@ ©»© B 0 @&

Peripherals Virtual Devices Log Learn Settings

— e— — e—
2022.11.16 39 Ver 2.0.5

:'=’| ?I- ?

BLE Application Note

— e—
2022.11.16

There are two available functions, i.e., READ VALUES and WRITTEN VALUES.

Click “Read again” to obtain IO status data, and the returned data is 0x00 or 0x01 (represents
LED off or LED on) to indicate 10 high level or 1O low level.

Click “Write new value”, and write 0 or 1 to configure IO low level or IO high level. Two statuses
of LED2 can be seen on AT-START-WBA415 board. LED2 is on when the circuit is low-level.

Figure 40. Read/write 10 data

< WB415-GATT 0xC101 Hex

WB415-GATT

OxC101

UUID: C101
Connected

READ VALUES

@ Cloud Connect

16:57:47.899

x00
16:57:36.229

WRITTEN VALUES

Write new value

X071
16:57:46.213 ®

16:57:42.971

DESCRIPTORS

PROPERTIES

Read

@ © B Q <
Peripherals Virtual Devices Log Learn Settings

=] —
40 Ver 2.0.5

BLE Application Note

4.4

4.4.1

Transparent mode

The transparent command simplifies development process, so users do not need to implement
services and characteristics but only focus on application development on the MCU side. Other
required functions can be realized by defining the format of transparent data. In transparent mode,
no “CR + LF” is added at the end of each data. This application note introduces two interfaces, i.e.,
WB415 USART2 used for connection with mobile app, and USB interface used for custom HID.

UART interface

1. Use the USER key on AT-START-WBA415 to switch AT command mode and transparent mode

(UART and USB). The current mode information is print out through USART2_TX(PA2). LED3
indicates the current mode. In AT command mode, LED3 is off; in transparent mode, LED3 is
on.

Note: Transparent mode conflicts with AT command mode, which means that custom services are unavailable
in transparent mode.

2022.11.16

Press USER key on WB415 to enter transparent mode, and LEDS is on; or confirm whether the
current mode is transparent mode according to the message print out via USART2.

Figure 41. Switch to transparent mode

Port

COMIMATLink-TSART
Band rate
Stop bits 1 ~||
Databits |8 ~ ||
Paritr None ~

Cperation @ Cloze

Save Data Clear Data

[] Hex [JDTR
[JRT& [BahiRE
[TimeStamp 100 ms

Single Bend Multi Send Protocol Transmit Help

hell 14
ello wor tend

Clear Send

[Timing c:yc1e;|znnn | S | Open File Send Fils Stop Send | |

(] Hex Send [] Wordwrap 0% F SEFEHiGEp: e opensdy com/

-ﬁ ~ | www.openedv.com | 5:0 R:78 CT5=1D5R=0DCD=0 | Current time13:34:23

41 Ver 2.0.5

AR

BLE Application Note

2022.11.16

3. Use LightBlue to connectto WB415, and find the FOOO service that includes FOO01 and FO02
characteristics. The service and characteristics are used in transparent mode.

Figure 42. LightBlue connects to WB415

< Back Peripheral Clone

WB415-GATT

UUID: 0C072287-2C14-74BF-038B-3201FBD714B8
ADVERTISEMENT DATA Show
UuID:

0O0O0OF000-0000-...0-00805F9B34FB

OxFO0284CF-F7E3-55B4-6C4C-9FD140100A16
Properties: Write Without Response

OxFO0184CF-F7E3-55B4-6C4C-9FD140100A16
Properties: Notify

UUID: CODE

0xC101

Properties: Read Write Without Response
Device Information

Manufacturer Name String

BEKEN SAS

Model Number String

BK-BLE-1.0

@ »® B 9 @
Peripherals €

-
42 Ver 2.0.5

o[- BLE Application Note

4. Transmit data to MCU through transparent mode: Enter OxF002 and switch the data mode to
UTF-8 String in the upper right. Click “Write new value” to input any string, and the string will be
output to the serial port assistant through USART2 TX of WB415.

Figure 43. LightBlue write data

< WB415-GATT 0xFO0284CF-F7E...| UTF-8

WB415-GATT

OxFO0284CF-F7E3-55B4. ..

UUID: FO0284CF-F7E3-55B4-6C4C-9FD140100A16

Connected

Write new value

write to wb415 ®

PROPERTIE

Write Without Response

Ver 2.0.5

BLE Application Note

2022.11.16

Figure 44. WB415 prints the received data

i Xxcom vas

Port

COMIMATLink-USART

Band rate [115200 w

Etop bits 1 w
Diata bits g e
Parity Nomne w
Crperation @ Cloz=
Sawe Data Clear Data
[] Hex JDIR
[JRI& [BzhiRTE
[Timeltemp 100 ms
Single Jend Multi Send Protocol Transmit Help
Send
Clear Send
[Timing Cycle:|ZDDD | ns | Open File Send File Stop Send

[] HexSend [Wordwrap

-ﬁ ~ | www.openedv.com ES:D

0% F &ETFEHitEhtp: fewe openedy com!

[R14 | CTS=1DSR=0 DCD=0 | Current time14:09:53

5. Transmit data to a smartphone through transparent mode: Enter OxF00O1 and click “Listen for
notifications”, and the first data to be received is “Notification Start”. Then, click “Send” after the
serial port assistant has printed all strings, and OxF0O01 will display these strings.

Figure 45. Input data to WB415

A XCOM V2.6

Port

COMI0ATLink-TRART

Band rate 115200 w

Atop bits 1 w
Diata bits] w
Parity MNomne w
Operation @ Clos
Save Data Clear Diata
[] Hex JDIR
[JRTS [] BzhiwE
[] TimeStamp 100 e
Single Send Multi Send Protocol Transmit Help
notifx app I Cond
i e
Clear Send
[Timdng Cyele: |zuuu | ms | Open File Send File Stop Send

[JHexSend [Wordwrap

-ﬁ + [www.openedv.com ?S:‘ID

0% T &EFHEHiEp: frwe openedy com!

| RO | CTS=1DSR=0 DCD=0 | Current time14:11:46

44 Ver 2.0.5

|— BLE Application Note

Figure 46. LightBlue receives data from WB415

{ WB415-GATT OxFOO0184CF-F7E... UTF-8

WB415-GATT

OxFOO184CF-F7E3-55B4. ..

UUID: FOO184CF-F7E3-55B4-6C4C-9FD140100A16

Connected

Stop listening

1:]) Cloud Connect

notify app

Notify

4.4.2 USB interface

The demo of transparent mode via USB is based on the custom HID demo in BSP; refer to ANO097

for details. Exactly the same as transparent mode via UART on the BT end, it uses Artery USB HID

Demo host computer to connect to WB415, and the transmit and receive data also have 0xF001

and OxF002 features. The process is as below:

1. Switch WBA415 to USB transparent mode; press the USER key to switch among UART, USB
and General mode.

2. ConnectUSB cable to WB415, open the host computer and select USB HID target.

2022.11.16 45 Ver 2.0.5

’|Q|- ? BLE Application Note

Figure 47. Select USB HID Target

A7 Artery USB HID Demo_v1.0.2 b4
. USB HID Target [HID-complant device =l
— Device capabilities I
Buttons Leds
Cormmunication view [~ Led 2 Repott 1D [h] |2 a
g"j Button 1 Repart 1D [h) |5 g

I~ Led 2 Report ID [h) |3 a
[~ Led 4 Report D [h) |4 °

Input Report byte length [h)

Clear Input |

Output Report byte length (k) Iq Bytes

Write |

3. Fillin the data length before sending data to APP; then click “Write” and check OxF0O01 on
mobile APP to view the received data.

Figure 48. Fill in data length

77 Artery USB HID Demo_v1.0.2 x
= USE HID Target |HID-compliant device ;I
— Device capabilities I
Buttons Leds

e

Cammurnication view [~ Led 2 Report 1D [h) |2 g
et Button 1 Repart 1D (k) |5 a
[~ Led 2 Report 1D [h) |3 a
[~ Led 4 Report 1D [h) Id a

Input Repart byte length [h)

Clear Input |

Output Report byte length [h) |4 Bytes
UUOU'M BB CC DDl -

e ———— - L]
2022.11.16 46 Ver 2.0.5

BLE Application

Note

2022.11.16

Figure 49. Received data on mobile APP

{ WB415-GATT OxFOO184CF-F7E3-... Hex

WB415-GATT

OxFOO0184CF-F7E3-55B4...

UUID: FOO184CF-F7E3-55B4-6C4C-9FD140100A16

Connected

Stop listening
(i) Cloud Connect

AABBCCDD

Notify

The same as UART transparent mode, the mobile APP sends data to USB host computer; then
find the OXF002 and write data. The data sent from mobile is displayed in the “Input Report” on

the USB host computer.

Figure50. Send data to USB host computer

{ WB415-GATT OxFO0284CF-F7E3-... Hex

WB415-GATT

OxFO0284CF-F7E3-55B4. ..

UUID: F00284CF-F7E3-55B4-6C4C-9FD140100A16

Connected

Write new value

112233445566 ®

Write Without Response

Ver 2.0.5

’|Q|- ? BLE Application Note

Figure 51. Received data in Input Report on the host computer

A7 Artery USB HID Demo_v1.0.2 b4
. USB HID Target [HID-complant device =l
— Device capabilities I
Buttons Leds

~

Cormmunication view [~ Led 2 Repott 1D [h] |2 a
":1 Button 1 Repart 1D [h) |5 g
I~ Led 2 Report ID [h) |3 a

[~ Led 4 Report D [h) |4 °
Input Report byte length [h)
00aa |ll 22 33 44 55 Eﬁl . "3DUE

Clear Input |

Output Report byte length (k) |4 Bytes
0000 AR BB CC LD P

— e— =] —
2022.11.16 48 Ver 2.0.5

<[

5

BLE Application Note

5

Revision history

Table 5. Document revision history

Date Version Revision note

2021.12.30 2.00 Initial release
1. Usefunctions inside BSP to call LED ON or LED OFF1;

2022.04.18 201 2. Modify the values returned in BLE Get IO state: “H” and “L” of ASCII changedto
“1” and “0”".

2022.04.25 002 1. Update the photo of WB415 board,;
2. Add instructions on MCU side code download.

2022.06.15 203 Add application cases oftransparentmode.

2022.07.08 204 Update screenshots of ICP tool and XCOM interfaces.

2022.11.16 2.05 Added transparentmode via USB.

2022.11.16

49 Ver 2.0.5

? BLE Application Note

2022.11.16

IMPORTANT NOTICE — PLEASE READ CAREFULLY

Purchasers understand and agree that purchasersare solely responsible forthe selection and use of Artery’sproductsand services.

Artery’s productsand services are provided “AS IS” and Artery providesno warrantiesexpress, implied or statutory, including, without
limitation, any implied warranties of merchantability, satisfactory quality, non-infringement, or fitnessfor a particular purpose with respect to

the Artery’s productsand services.

Notwithstandinganything to the conftrary, purchasersacquiresno right, title orinterestin any Artery’sproductsand servicesor any
intellectual property rightsembodied therein. In no event shall Artery’sproductsand servicesprovided be construed as(a) granting
purchasers, expressly or by implication, estoppel orotherwise, a license to use third party’sproductsand services; or (b) licensing the third

parties’ intellectual property rights; or (c) warranting the third party’sproductsand servicesand itsintellectual property rights.

Purchasers hereby agreesthat Artery’s productsare not authorized for use as, and purchasersshall notintegrate, promote, sell or
otherwise transferany Artery’s product to any customer orend user foruse as critical componentsin (a) any medical, life saving orlife
support device orsystem, or (b) any safety device or system in any automotive application and mechanism (including butnot | imited to
automotive brake orairbag systems), or (c) any nuclear facilities, or (d) any air traffic control device, application or system, or (e) any
weaponsdevice, applicationor system, or (f) any otherdevice, application or system where itisreasonably foreseeable that failure of the
Artery’s productsas used in such device, application or system would lead to death, bodily injury or catastrophic property damage.

Any inconsistency of the sold ARTERY productswith the statementand/or technical featuresspecification described inthisdo cumentwill
immediately cause the invalidity of any warranty granted by ARTERY productsor services stated in thisdocument by ARTERY,and
ARTERY disclaimsany responsibility inany form.

© 2022 ARTERY Technology — All Rights Reserved

50 Ver 2.0.5

	1 Introduction to Bluetooth
	1.1 Generic Access Profile (GAP)
	1.1.1 Device role
	1.1.2 Advertising and scan response data
	1.1.3 Broadcast network topology

	1.2 GATT
	1.2.1 Connected network topology
	1.2.2 GATT Transactions
	1.2.3 Services and characteristics
	1.2.3.1 Profile
	1.2.3.2 Service
	1.2.3.3 Characteristics

	1.3 System framework

	2 Add custom services to BLE
	2.1 Add profiles to project
	2.2 Configure profiles in project
	2.3 Add custom services to current software architecture
	2.4 BLE interface description

	3 AT command
	3.1 Introduction
	3.2 BLE command

	4 BLE application case
	4.1 Hardware
	4.2 Software resources
	4.2.1 MCU operations
	4.2.2 BLE receives requests
	4.2.3 BLE sends requests
	4.2.4 Software download

	4.3 AT command mode
	4.4 Transparent mode
	4.4.1 UART interface
	4.4.2 USB interface

	5 Revision history

