
BLE Application Note

2022.11.16 1 Ver 2.0.5

AN0077

Application Note

BLE Application Note

Introduction
This application note introduces how to use AT32WB415 wireless Bluetooth module to customize
BLE-related functions, how to execute communication between wireless Bluetooth module and

MCU, and how the MCU behaves after it receives a request from wireless Bluetooth module. In
addition, this application note outlines AT command protocol, and introduces how to add custom
services and characteristics to the Bluetooth module profile, as well as how to handle these
demand commands from the wireless Bluetooth module on the MCU side.

In addition, this document also introduces how to control wireless Bluetooth module functions

through AT command, allowing users to change the basic configurations on BLE side without
modifying the code.

Applicable products:

Part number AT32WB415xx

BLE Application Note

2022.11.16 2 Ver 2.0.5

Contents

1 Introduction to Bluetooth .. 7

1.1 Generic Access Profile (GAP) .. 8

1.1.1 Device role... 9

1.1.2 Advertising and scan response data .. 9

1.1.3 Broadcast network topology ... 9

1.2 GATT .. 10

1.2.1 Connected network topology.. 10

1.2.2 GATT Transactions .. 11

1.2.3 Services and characteristics... 11

1.3 System framework .. 13

2 Add custom services to BLE... 14

2.1 Add profiles to project ... 14

2.2 Configure profiles in project ... 14

2.3 Add custom services to current software architecture ... 15

2.4 BLE interface description ... 18

3 AT command ... 20

3.1 Introduction .. 20

3.2 BLE command ... 20

4 BLE application case .. 25

4.1 Hardware ... 25

4.2 Software resources ... 25

4.2.1 MCU operations ... 25

4.2.2 BLE receives requests ... 29

4.2.3 BLE sends requests ... 32

4.2.4 Software download .. 33

4.3 AT command mode ... 38

4.4 Transparent mode ... 41

4.4.1 UART interface .. 41

BLE Application Note

2022.11.16 3 Ver 2.0.5

4.4.2 USB interface... 45

5 Revision history .. 49

BLE Application Note

2022.11.16 4 Ver 2.0.5

List of tables

Table 1. Characteristics of custom service .. 18

Table 2. Permission definitions.. 18

Table 3. AT command set list(send from MCU) .. 20

Table 4. AT command set list(send from BLE) .. 24

Table 5. Document revision history ... 49

BLE Application Note

2022.11.16 5 Ver 2.0.5

List of figures

Figure 1. Bluetooth core system architecture .. 8

Figure 2. Advertising and scan response .. 9

Figure 3. Broadcast network topology ... 10

Figure 4. Connected network topology...11

Figure 5. GATT Transactions ...11

Figure 6. Profile architecture ... 12

Figure 7. System framework ... 13

Figure 8. Files in profile .. 14

Figure 9. Files in app .. 15

Figure 10. Include Paths ... 15

Figure 11. Entry point for processing new task ID ... 15

Figure 12. List of services ... 16

Figure 13. List of functions .. 16

Figure 14. Initialize custom service ... 16

Figure 15. Add task ID .. 16

Figure 16. Call custom_prf_itf_get() .. 17

Figure 17. Declare custom_prf_itf_get() .. 17

Figure 18. Open the macro for custom service and conditions listed as servo profile 17

Figure 19. ATT database of custom service .. 18

Figure 20. Data sending function .. 18

Figure 21. Data receiving function... 19

Figure 22. AT-START-WB415 Board ... 25

Figure 23. Initialize LED function .. 26

Figure 24. Write LED .. 26

Figure 25. Read LED .. 27

Figure 26. Call GPIO write and read function .. 28

Figure 27. Poll app_user_entry() in main loop ... 29

Figure 28. Decode received data .. 30

Figure 29. Select corresponding case, execute event and respond... 31

Figure 30. Send write IO command... 32

Figure 31. Send read IO command and send back data ... 33

Figure 32. Host computer software connects to AT32WB415 chip... 34

Figure 33. Add BLE files ... 35

BLE Application Note

2022.11.16 6 Ver 2.0.5

Figure 34. Modify BLE download start address ... 35

Figure 35. Add MCU files .. 36

Figure 36. Click to download... 37

Figure 37. Download & verification completion.. 37

Figure 38. Search WB415-GATT .. 38

Figure 39. Connection status and 0xC101 characteristics ... 39

Figure 40. Read/write IO data ... 40

Figure 41. Switch to transparent mode.. 41

Figure 42. LightBlue connects to WB415 .. 42

Figure 43. LightBlue write data ... 43

Figure 44. WB415 prints the received data ... 44

Figure 45. Input data to WB415 .. 44

Figure 46. LightBlue receives data from WB415 ... 45

Figure 47. Select USB HID Target... 46

Figure 48. Fill in data length.. 46

Figure 49. Received data on mobile APP .. 47

Figure50. Send data to USB host computer .. 47

Figure 51. Received data in Input Report on the host computer .. 48

BLE Application Note

2022.11.16 7 Ver 2.0.5

1 Introduction to Bluetooth

One key reason for the incredible success of Bluetooth® technology is the tremendous flexibility it

provides developers. Offering two radio options, Bluetooth technology provides developers with a

versatile set of full-stack, fit-for-purpose solutions to meet the ever-expanding needs for wireless

connectivity.

Whether a product streams high-quality audio between a smartphone and speaker, transfers data

between a tablet and medical device, or sends messages between thousands of nodes in a

building automation solution, the Bluetooth Low Energy (LE) and Bluetooth Classic radios are

designed to meet the unique needs of developers worldwide.

This application note focuses on Bluetooth Low Energy (hereinafter referred to as BLE) rather than

classic Bluetooth (hereinafter referred to as BR/EDR). For details about BR/EDR, please visit the

official website of Bluetooth SIG.

The Bluetooth Low Energy (BLE) radio is designed for very low power operation. Transmitting data

over 40 channels in the 2.4 GHz unlicensed ISM frequency band, the BLE radio provides

developers a tremendous amount of flexibility to build products that meet the unique connectivity

requirements of their market. BLE supports multiple communication topologies, expanding from

point-to-point to broadcast and, most recently, mesh, enabling Bluetooth technology to support the

creation of reliable, large-scale device networks. While initially known for its device communications

capabilities, BLE is now also widely used as a device positioning technology to address the

increasing demand for high accuracy indoor location services. BLE, which initially supports simple

presence and proximity features, now also supports Bluetooth® direction finding and will soon

support high-precision distance measurements.

The architecture of BLE is shown in Figure 1.

BLE Application Note

2022.11.16 8 Ver 2.0.5

Figure 1. Bluetooth core system architecture

In this application, the modified parts of code are all in the Host block and only LE controller block

is used, and the entire BLE system is implemented by the wireless Bluetooth module. The part that

will actually be modified is GAP and GATT in the Host block. The following sections will introduce

GAP and GATT and the influences of modifying the two small blocks.

1.1 Generic Access Profile (GAP)

GAP is an acronym for the Generic Access Profile, and it controls connections and advertising in

Bluetooth. GAP is what makes your device visible to the outside world, and determines how two

BLE Application Note

2022.11.16 9 Ver 2.0.5

devices can (or cannot) interact with each other.

1.1.1 Device role

GAP defines various roles for devices, but the two key concepts to keep in mind are Central

devices and Peripheral devices.

Peripheral devices are small, low power, resource constrained devices. Central devices are usually

the mobile phone or tablet that you connect to with far more processing power and memory.

1.1.2 Advertising and scan response data

There are two ways to send advertising out with GAP, i.e., Advertising Data payload and Scan

Response payload. Both payloads are identical and can contain up to 31 bytes of data, but only the

advertising data payload is mandatory, since this is the payload that will be constantly transmitted

out from the device to let central devices in range know that it exists.

The scan response payload is an optional secondary payload that central devices can request, and

allows device designers to fit a bit more information in the advertising payload such a strings for a

device name, etc.

Figure 2. Advertising and scan response

1.1.3 Broadcast network topology

While most peripherals advertise themselves so that a connection can be established and GATT

services and characteristics can be used (which allows for much more data to be exchanged in

both directions), there are situations where you only want to advertise data.

The main use case here is where you want a peripheral to send data to more than one device at a

time. This is only possible using the advertising packet since data sent and received in connected

mode can only be seen by those two connected devices.

By including a small amount of custom data in the 31 byte advertising or scan response payloads,

you can use a low cost Bluetooth Low Energy peripheral to send data one-way to any devices in

listening range, as shown in the figure below. This is known as Broadcasting in Bluetooth Low

Energy.

Once you establish a connection between your peripheral and a central device, the advertising

process will generally stop and you will typically no longer be able to send advertising packets out

anymore, and you will use GATT services and characteristics to communicate in both directions.

BLE Application Note

2022.11.16 10 Ver 2.0.5

Figure 3. Broadcast network topology

1.2 GATT

GATT is an acronym for the Generic Attribute Profile, and it defines the way that two Bluetooth Low

Energy devices transfer data back and forth using concepts called Services and Characteristics. It

makes use of a generic data protocol called the Attribute Protocol (ATT), which is used to store

Services, Characteristics and related data in a simple lookup table using 16-bit IDs for each entry in

the table.

GATT comes into play once a dedicated connection is established between two devices, meaning

that you have already gone through the advertising process governed by GAP.

The most important thing to keep in mind with GATT and connections is that connections are

exclusive. It means that a BLE peripheral can only be connected to one central device at a time! As

soon as a peripheral connects to a central device, it will stop advertising itself and other devices will

no longer be able to see it or connect to it until the existing connection is broken.

Establishing a connection is also the only way to allow two-way communication, where the central

device can send meaningful data to the peripheral and vice versa.

1.2.1 Connected network topology

The following figure should explain the way that Bluetooth Low Energy devices work in a connected

environment. A peripheral can only be connected to one central device (such as a mobile phone) at

a time, but the central device can be connected to multiple peripherals.

If data needs to be exchanged between two peripherals, a custom mailbox system will need to be

implemented where all messages pass through the central device.

Once a connection is established between a peripherals and central device, however,

communication can take place in both directions, which is different f rom the one-way broadcasting

approach using only advertising data and GAP.

BLE Application Note

2022.11.16 11 Ver 2.0.5

Figure 4. Connected network topology

1.2.2 GATT Transactions

An important concept to understand with GATT is the server/client relationship. The peripheral is

known as the GATT Server, which holds the ATT lookup data and service and characteristic

definitions, and the GATT Client (the phone/tablet), which sends requests to this server. All

transactions are started by the GATT Client, which receives response from the GATT Server.

When establishing a connection, the peripheral will suggest a “Connection Interval” to the central

device, and the central device will try to reconnect every connection interval to see if any new data

is available, etc. It is important to keep in mind that this connection interval is really just a

suggestion, though! Your central device may not be able to honor the request because it is busy

communicating with another peripheral or the required system resources just are not available.

The following figure should illustrate the data exchange process between a peripheral (the GATT

Server) and a central device (the GATT Client), with the main device initiating every transaction.

Figure 5. GATT Transactions

1.2.3 Services and characteristics

GATT transactions in BLE are based on high-level, nested objects called Profiles, Services and

Characteristics, which can be seen in the figure below.

BLE Application Note

2022.11.16 12 Ver 2.0.5

Figure 6. Profile architecture

1.2.3.1 Profile

A Profile does not actually exist on the BLE peripheral itself; it is simply a pre-defined collection of

Services that has been compiled either by the Bluetooth SIG or by the peripheral designers. The

Heart Rate Profile, for example, combines the Heart Rate Service and the Device Information

Service. The complete list of officially adopted GATT-based profiles can be seen here: Profiles

Overview.

1.2.3.2 Service

Services are used to break data up into logical entities, and contain specific chunks of data called

characteristics. A service can have one or more characteristics, and each service distinguishes

itself from other services by means of a unique numeric ID called UUID, which can be either 16-bit

(for officially adopted BLE Services) or 128-bit (for custom services).

A full list of officially adopted BLE services can be seen on the “Service” page of the Bluetooth

Developer Portal. If you look at the Heart Rate Service, for example, we can see that this officially

adopted service has a 16-bit UUID of 0x180D, and contains up to three characteristics, though only

the first one is mandatory: Heart Rate Measurement, Body Sensor Location and Heart Rate Control

Point.

1.2.3.3 Characteristics

The lowest level concept in GATT transactions is the Characteristic, which encapsulates a single

data point (though it may contain an array of related data, such as X/Y/Z values from a 3-axis

accelerometer, etc.).

Similarly to Services, each Characteristic distinguishes itself via a pre-defined 16-bit or 128-bit

https://www.bluetooth.com/specifications/specs/
https://www.bluetooth.com/specifications/specs/
https://btprodspecificationrefs.blob.core.windows.net/assigned-values/16-bit%20UUID%20Numbers%20Document.pdf

BLE Application Note

2022.11.16 13 Ver 2.0.5

UUID, and you're free to use the standard characteristics defined by the Bluetooth SIG or define

your own custom characteristics which only your peripheral and SW understands.

As an example, the Heart Rate Measurement characteristic is mandatory for the Heart Rate

Service, and uses a UUID of 0x2A37. It starts with a single 8-bit value describing the HRM data

format (whether the data is UINT8 or UINT16, etc.), and then goes on to include the heart rate

measurement data that matches this config byte.

Characteristics are the main point that you will interact with your BLE per ipheral, so it is important

to understand the concept. They are also used to send data back to the BLE peripheral, since you

are also able to write to characteristic. You could implement a simple UART-type interface with a

custom “UART Service” and two characteristics, one for the TX channel and one for the RX

channel, where one characteristic might be configured as read only and the other would have write

privileges.

1.3 System framework

AT32WB415 actually consists of MCU and wireless Bluetooth module (BLE) that communicates

through UART interface. After receiving a request from remote APP, BLE obtains required

information from MCU or performs operations through AT command; or the MCU sends AT

command request through UART to change the configuration on BLE side. No matter which

direction the request is sent, users can expand AT command according to the needs to implement

various control methods.

Figure 7. System framework

BLE Application Note

2022.11.16 14 Ver 2.0.5

2 Add custom services to BLE

In this routine, there are already necessary services for GATT, and these services can be obtained

through remote APP, but users need to customize services to implement other desired functions. In

this application, a custom service is written for users. Users can also add other services following

this routine.

In addition, this is an ARM9 project, and users need to install Legacy Support for compilation.

Please download at www2.keil.com/mdk5/legacy/.

2.1 Add profiles to project

When adding a custom service, the following six files are required:

 custom.c

 custom.h

 custom_task.c

 custom_task.h

 app_custom.c

 app_custom.h

 Put these files in the following directory (users need to create a folder):

 custom.c and custom_task.c: sdk\ble_stack\com\profiles\custom\src

 custom.h and custom_task.h: sdk\ble_stack\com\profiles\custom\api

 app_custom.c and app_custom.h: projects\ble_app_gatt\app

2.2 Configure profiles in project

1. Open Keil, and then add custom.c and custom_task.c to “profile”.

Figure 8. Files in profile

file:///C:/Users/user/Documents/AN0077_AT32_BLE_Application_Note/Doc/www2.keil.com/mdk5/legacy/

BLE Application Note

2022.11.16 15 Ver 2.0.5

2. Add app_custom.c to “app”.

Figure 9. Files in app

3. Add the corresponding profile path to “Include Paths” of Keil C/C++.

Figure 10. Include Paths

2.3 Add custom services to current software architecture

1. Find the appm_msg_handler function in app_task.c, and add message case for custom ID

processing.

Figure 11. Entry point for processing new task ID

BLE Application Note

2022.11.16 16 Ver 2.0.5

2. Find the appm_svc_list in app.c.

Figure 12. List of services

3. Add a list of functions in app.c to create a database.

Figure 13. List of functions

4. Find appm_init function in app.c and add in app_custom_init function.

Figure 14. Initialize custom service

5. Add custom service ID to TASK_API_ID of rwip_task.h.

Figure 15. Add task ID

BLE Application Note

2022.11.16 17 Ver 2.0.5

6. Add customs_prf_itf_get function call to prf.c.

Figure 16. Call custom_prf_itf_get()

7. Add custom_prf_itf_get function declaration to prf.c.

Figure 17. Declare custom_prf_itf_get()

8. Add the following definitions to rwprf_config.h.

Figure 18. Open the macro for custom service and conditions listed as servo profile

The BLE_CUSTOM_SERVER macro definition is used in custom.c, custom.h, custom_task.c and

custom_task.h. The compiler can compile custom services only when this macro is open.

BLE Application Note

2022.11.16 18 Ver 2.0.5

2.4 BLE interface description

1. Custom service implements a readable and writable characteristic, and its UUID and related

attributes are shown in the following table.

Table 1. Characteristics of custom service

UUID Characteristic permission Data length to be sent/received

0xC101 Read/Write without response 1 byte

Set permissions in the ATT database of custom service.

Figure 19. ATT database of custom service

The second parameter of the structure can set the permission of custom service or characteristic.

The permissions are defined as follows.

Table 2. Permission definitions

Code symbol Description

RD Read

WRITE_REQ Write

WRITE_COMMAND Write without response

NTF Notification

IND Indication

2. Data sending function is located in custom_task.c, which is implemented by using

gattc_write_req_ind_handler() function.

Figure 20. Data sending function

BLE Application Note

2022.11.16 19 Ver 2.0.5

3. Data receiving function is located in app_custom.c, which is implemented by using

custom_value_req_ind_handler() function. More cases can be added through switch in a similar

way.

Figure 21. Data receiving function

BLE Application Note

2022.11.16 20 Ver 2.0.5

3 AT command

3.1 Introduction

The Hayes command set (also known as the AT command set) is a specific command language

originally developed for the Hayes Smartmodem 300. The command set consists of a series of

short text strings that can be combined to produce commands for operations such as dialing,

hanging up, and changing the parameters of the connection. The vast majority of dial -up modems

use the Hayes command set in numerous variations.

The Hayes command set can subdivide into four groups:

1. Basic command set: A capital character followed by a digit. For example, M1.

2. Extended command set: An "&" (ampersand) and a capital character followed by a digit. This

extends the basic command set. For example, &M1.

3. Proprietary command set: Usually starting either with a backslash ("\") or with a percent sign

("%"); these commands vary widely among modem manufacturers.

4. Register commands: Sr=n, where “r” is the number of the register to be changed, and “n” is the

new value that is assigned.

3.2 BLE command

In this application note, only the basic command set is used. There are also some important

characters for modem initialization.

1) AT - "Attention": Each command string is prefixed with "AT", and a number of discrete modem

commands can be concatenated after the "AT".

2) Z - reset: Reset the modem to its initial state.

3) (a comma): Pause the software for one second, or many seconds if there are multiple commas.

4) ^M - Send a Carriage Return character to modem. It is a control character (transmitting this

character is actually transmitting a byte, and the content is CR in ASCII).

AT command set lists implemented in this application are shown below.

Table 3. AT command set list(send from MCU)

 Send from MCU Response from BLE Note

Wrong command or

command not supported

 ERROR When the BLE receives a

command not supported or

wrong command, it returns

ERROR, and MCU/BLE will

send a new AT command.

E.g., If MCU sends a wrong

command ATT, BLE will

return ERROR.

Startup test: AT AT OK A. It is used to confirm

whether the BLE is

ready.

B. After receiving this

command, MCU

returns OK and

confirms to start AT

BLE Application Note

2022.11.16 21 Ver 2.0.5

command, thus to

avoid MCU sending AT

command before the

completion of BLE

power-on initialization,

causing malfunctions.

E.g., Test to confirm that

BLE is in AT command

mode: if MCU sends AT,

BLE will return OK.

Set UART

baud rate

and save in

Flash:

AT+BAUD

9600bps AT+BAUD1 OK9600 A. Default baud rate:

9,600bps

B. After BLE responds to

the baud rate, the new

baud rate is saved in

Flash, and BLE

communicates with

MCU at the new baud

rate. Power on again

and reset, BLE will

continue

communication at the

set baud rate

C. After BLE responds to

the baud rate, it

immediately switches

to the new baud rate

for communication.

E.g., When the baud rate is

set to 115,200bps, MCU

sends AT+BAUD5 and BLE

returns OK115200; then

BLE communicates with

MCU at 115,200bps. Power

on again and reset, BLE will

continue communication at

115,200bps.

19200bps AT+BAUD2 OK19200

38400bps AT+BAUD3 OK38400

57600bps AT+BAUD4 OK57600

115200bps AT+BAUD5 OK115200

Set UART

baud rate

and save in

SRAM:

AT+BAUDS

9600bps AT+BAUDS1 OK9600 A. After BLE responds to

the baud rate, it

communicates with

MCU at the new baud

rate. Power on again,

BLE will communicate

at the baud rate saved

in Flash.

19200bps AT+BAUDS2 OK19200

38400bps AT+BAUDS3 OK38400

57600bos AT+BAUDS4 OK57600

115200bps AT+BAUDS5 OK115200

BLE Application Note

2022.11.16 22 Ver 2.0.5

B. After responding to the

baud rate, BLE

communicates with

MCU at the new baud

rate immediately.

E.g., When the baud rate is

set to 19,200bps, MCU

sends AT+BAUDS2 and

BLE returns OK19200; then

BLE communicates with

MCU at 19200bps. Power

on again and reset, BLE will

communicate with MCU at

the baud rate saved in

Flash.

Modify BD name and save

in Flash:

AT+NAME

AT+NAMExxxx OKxxxx A. Default name:

SerialSPP

B. After BLE responds to

the BD name, the new

BD name is saved in

Flash, and BLE

continue advertising

with the new BD name.

Power on again and

reset, BLE will

continue

communication with

the new BD name.

C. Support up to 20-char

BD name.

E.g., When BD name is

changed to Serial-GATT,

MCU sends

AT+NAMESerial-GATT and

BLE returns OKSerial-

GATT; then BLE advertises

with the name of Serial-

GATT. Power on again and

reset, BLE will continue

using the name of Serial-

GATT.

Modify BD name and save

in SRAM:

AT+NAMES

AT+NAMESxxxx OKxxxx A. After responding to the

BD name, BLE

continue advertising

with the new BD name.

BLE Application Note

2022.11.16 23 Ver 2.0.5

Power on again and

reset, BLE will

continue

communication with

the BD name saved in

Flash.

B. Support up to 20-char

BD name.

E.g., When BD name is

changed to Serial-GATT,

MCU sends

AT+NAMESSerial-GATT

and BLE returns OKSerial-

GATT; then BLE advertises

with the name of Serial-

GATT. Power again and

reset, BLE will use the BD

name saved in Flash.

Set

advertising

interval and

save in

Flash:

AT+ADVI

100ms AT+ADVI1 OK100 A. Default advertising

interval: 100ms

B. After BLE returns OK,

the new advertising

interval is saved in

Flash and used for

advertising packet.

Power again and reset,

the new advertising

interval will be used.

E.g., When the advertising

interval is set to 100ms,

MCU sends AT+ADVI1 and

BLE returns OK100; then

the advertising interval is

100ms. Power again and

reset, BLE will continue

using the advertising

interval of 100ms.

250ms AT+ADVI2 OK250

500ms AT+ADVI3 OK500

1600ms AT+ADVI4 OK1600

3200ms AT+ADVI5 OK3200

Set

advertising

interval and

save in

SRAM:

AT+ADVIS

100ms AT+ADVIS1 OK100 After BLE returns OK, the

new interval is used for

advertising packet. Power

on again and reset, the

advertising interval saved in

Flash will be used.

E.g., When the advertising

interval is set to 100ms,

250ms AT+ADVIS2 OK250

500ms AT+ADVIS3 OK500

1600ms AT+ADVIS4 OK1600

3200ms AT+ADVIS5 OK3200

BLE Application Note

2022.11.16 24 Ver 2.0.5

MCU sends AT+ADVIS1

and BLE returns OK100;

then the advertising interval

is 100ms. Power on again

and reset, BLE will use the

advertising interval saved in

Flash.

Read Flash:

AT+RFLASH

AT+RFLASHad OKadda A. Default 256 byte data

value: FF

ad(address): 1char

da(data): 1 char

B. BLE returns OK

followed by address

and the corresponding

data.

E.g., When reading the data

of “address:00”, MCU sends

AT+RFLASH00 and BLE

returns OK00FF. The data

read from “address:00” is

FF.

Write Flash:

AT+WFLASH

AT+WFLASHad,

da

OKadda A. Default reserved for

MCU accessing 256

byte data: FF

ad(address): 1char

da(data): 1 char

B. BLE returns OK

followed by address

and the corresponding

data.

E.g., When writing data:AA

of “address:00”, MCU sends

AT+WFLASH00AA and BLE

returns OK00AA. The data

written to “address:00” is

AA.

Table 4. AT command set list(send from BLE)

 Send from BLE Response from MCU Note

Read remote IO level:

AT+IOGET

AT+IOGET OKIOx X= 0 or 1.

X=0: low level

X=1: high level

Write remote IO level:

AT+IOSET

AT+IOSETx OKIOx X= 0 or 1.

X=0: low level

X=1: high level

BLE Application Note

2022.11.16 25 Ver 2.0.5

4 BLE application case

This application case shows how to use BLE to operate AT32WB415 on smartphones, including IO

control and IO data reading.

4.1 Hardware

1) AT-START-WB415 Board

2) Smartphone with LightBlue APP

3) Micro USB cable

Figure 22. AT-START-WB415 Board

4.2 Software resources

4.2.1 MCU operations

IO control and data reading refer to the operations on MCU peripherals. In the code, users need to

complete initialization and write functions to be executed after receiving the command. This

application note takes GPIO control as an example, and users can follow this architecture for

subsequent development.

BLE Application Note

2022.11.16 26 Ver 2.0.5

1. First, configure the corresponding GPIO. In this case, LED2(PB7) on AT-START-WB415 is

used as the controlled pin.

Figure 23. Initialize LED function

2. Write the code to read and write LED.

Figure 24. Write LED

BLE Application Note

2022.11.16 27 Ver 2.0.5

Figure 25. Read LED

BLE Application Note

2022.11.16 28 Ver 2.0.5

3. Call the at_cmd_handler function in the main loop to decode the AT Command and perform

corresponding operations for different commands.

Figure 26. Call GPIO write and read function

BLE Application Note

2022.11.16 29 Ver 2.0.5

4.2.2 BLE receives requests

The command processing on Bluetooth side mainly relies on the app_user_entry() function in

app.c. After the uart_rx_done flag is set, entry the at_result_to_prefix() to perform decoding to

determine whether the received data is AT command and determine the corresponding command

number; then entry the corresponding case according to the command number, execute the

corresponding request event, and then respond to MCU side.

Figure 27. Poll app_user_entry() in main loop

BLE Application Note

2022.11.16 30 Ver 2.0.5

Figure 28. Decode received data

BLE Application Note

2022.11.16 31 Ver 2.0.5

Figure 29. Select corresponding case, execute event and respond

BLE Application Note

2022.11.16 32 Ver 2.0.5

4.2.3 BLE sends requests

The parts that send a request are added according to the implementation of characteristic. In this

application, they are read remote IO level and write remote IO level. Both parts send AT command

to MCU through the UART_SEND_DATA() function. The “write” in this application is set as “Write

without response” in Profile, so there is no need to wait for the response from MCU. As for “read” in

this application, the value should be added to the response of GATT, so users must wait for the

MCU to respond. In the code, the at_wait_for_rsp() function is used, and wait to obtain the

responded data. After obtaining the data from MCU, send the data to the smartphone through the

ke_msg_send() function.

Figure 30. Send write IO command

BLE Application Note

2022.11.16 33 Ver 2.0.5

Figure 31. Send read IO command and send back data

4.2.4 Software download

After compiling the code of Bluetooth and MCU, download software to WB415 board through ICP

Tool. Users need to import wb415_ble_app_merge.bin (BLE side code) and Template.hex (MCU

side code). The download process is as follows:

1. Connect AT-Link to PC via USB.

2. Open the host computer software Artery ICP Programmer Tool and connect to the AT32WB415

chip.

3. Select BLE side code. Click the “Add” button in “File info” and select files to be downloaded.

The default path after BLE side code compilation is “output->app” of the project. Select

BLE Application Note

2022.11.16 34 Ver 2.0.5

wb415_ble_app_merge.bin, and enter the download start address “0x00000000”.

4. Select MCU side code. Click the “Add” button in “File info” and select files to be downloaded.

The default path after MCU side code compilation is the “Objects” folder of the project. Then,

select Template.hex.

5. Click to download.

6. After the download is complete, the host computer software will prompt download & verification

completion.

Figure 32. Host computer software connects to AT32WB415 chip

BLE Application Note

2022.11.16 35 Ver 2.0.5

Figure 33. Add BLE files

Figure 34. Modify BLE download start address

BLE Application Note

2022.11.16 36 Ver 2.0.5

Figure 35. Add MCU files

BLE Application Note

2022.11.16 37 Ver 2.0.5

Figure 36. Click to download

Figure 37. Download & verification completion

BLE Application Note

2022.11.16 38 Ver 2.0.5

4.3 AT command mode

It is recommended to install a Bluetooth tool/software with Bluetooth device operation function on

the smartphone. This application note takes LightBlue APP as an example.

Perform the following steps to verify that the AT command mode in this application works properly.

1. Open LightBlue APP and find the Bluetooth device called WB415-GATT and then connect to it.

Figure 38. Search WB415-GATT

BLE Application Note

2022.11.16 39 Ver 2.0.5

2. Check to confirm that it is connected. Click UUID:C0DE and confirm that the 0xC101 is set. The

0xC101 is the service and characteristic used in AT command mode.

Figure 39. Connection status and 0xC101 characteristics

BLE Application Note

2022.11.16 40 Ver 2.0.5

3. There are two available functions, i.e., READ VALUES and WRITTEN VALUES.

4. Click “Read again” to obtain IO status data, and the returned data is 0x00 or 0x01 (represents

LED off or LED on) to indicate IO high level or IO low level.

5. Click “Write new value”, and write 0 or 1 to configure IO low level or IO high level. Two statuses

of LED2 can be seen on AT-START-WB415 board. LED2 is on when the circuit is low-level.

Figure 40. Read/write IO data

BLE Application Note

2022.11.16 41 Ver 2.0.5

4.4 Transparent mode

The transparent command simplifies development process, so users do not need to implement

services and characteristics but only focus on application development on the MCU side. Other

required functions can be realized by defining the format of transparent data. In transparent mode,

no “CR + LF” is added at the end of each data. This application note introduces two interfaces, i.e.,

WB415 USART2 used for connection with mobile app, and USB interface used for custom HID.

4.4.1 UART interface

1. Use the USER key on AT-START-WB415 to switch AT command mode and transparent mode

(UART and USB). The current mode information is print out through USART2_TX(PA2). LED3

indicates the current mode. In AT command mode, LED3 is off; in transparent mode, LED3 is

on.

Note: Transparent mode conflicts with AT command mode, which means that custom services are unavailable

in transparent mode.

2. Press USER key on WB415 to enter transparent mode, and LED3 is on; or confirm whether the

current mode is transparent mode according to the message print out via USART2.

Figure 41. Switch to transparent mode

BLE Application Note

2022.11.16 42 Ver 2.0.5

3. Use LightBlue to connect to WB415, and find the F000 service that includes F001 and F002

characteristics. The service and characteristics are used in transparent mode.

Figure 42. LightBlue connects to WB415

BLE Application Note

2022.11.16 43 Ver 2.0.5

4. Transmit data to MCU through transparent mode: Enter 0xF002 and switch the data mode to

UTF-8 String in the upper right. Click “Write new value” to input any string, and the string will be

output to the serial port assistant through USART2 TX of WB415.

Figure 43. LightBlue write data

BLE Application Note

2022.11.16 44 Ver 2.0.5

Figure 44. WB415 prints the received data

5. Transmit data to a smartphone through transparent mode: Enter 0xF001 and click “Listen for

notifications”, and the first data to be received is “Notification Start”. Then, click “Send” after the

serial port assistant has printed all strings, and 0xF001 will display these strings.

Figure 45. Input data to WB415

BLE Application Note

2022.11.16 45 Ver 2.0.5

Figure 46. LightBlue receives data from WB415

4.4.2 USB interface

The demo of transparent mode via USB is based on the custom HID demo in BSP; refer to AN0097

for details. Exactly the same as transparent mode via UART on the BT end, it uses Artery USB HID

Demo host computer to connect to WB415, and the transmit and receive data also have 0xF001

and 0xF002 features. The process is as below:

1. Switch WB415 to USB transparent mode; press the USER key to switch among UART, USB

and General mode.

2. Connect USB cable to WB415, open the host computer and select USB HID target.

BLE Application Note

2022.11.16 46 Ver 2.0.5

Figure 47. Select USB HID Target

3. Fill in the data length before sending data to APP; then click “Write” and check 0xF001 on

mobile APP to view the received data.

Figure 48. Fill in data length

BLE Application Note

2022.11.16 47 Ver 2.0.5

Figure 49. Received data on mobile APP

4. The same as UART transparent mode, the mobile APP sends data to USB host computer; then

find the 0xF002 and write data. The data sent from mobile is displayed in the “Input Report” on

the USB host computer.

Figure50. Send data to USB host computer

BLE Application Note

2022.11.16 48 Ver 2.0.5

Figure 51. Received data in Input Report on the host computer

BLE Application Note

2022.11.16 49 Ver 2.0.5

5 Revision history

Table 5. Document revision history

Date Version Revision note

2021.12.30 2.0.0 Initial release

2022.04.18 2.0.1

1. Use functions inside BSP to call LED ON or LED OFF1;

2. Modify the values returned in BLE Get IO state: “H” and “L” of ASCII changed to

“1” and “0”.

2022.04.25 2.0.2
1. Update the photo of WB415 board;

2. Add instructions on MCU side code download.

2022.06.15 2.0.3 Add application cases of transparent mode.

2022.07.08 2.0.4 Update screenshots of ICP tool and XCOM interfaces.

2022.11.16 2.0.5 Added transparent mode via USB.

BLE Application Note

2022.11.16 50 Ver 2.0.5

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Purchasers understand and agree that purchasers are solely responsible for the selection and use of Artery’s products and services.

Artery’s products and services are provided “AS IS” and Artery provides no warranties express, implied or statutory, including, without

l imitation, any implied warranties of merchantability, satisfactory quality, non-infringement, or fitness for a particular purpose with respect to

the Artery’s products and services.

Notwithstanding anything to the contrary, purchasers acquires no right, title or interest in any Artery’s products and services or any

intellectual property rights embodied therein. In no event shall Artery’s products and services provided be construed as (a) granting

purchasers, expressly or by implication, estoppel or otherwise, a license to use third party’s products and services; or (b) l icensing the third

parties’ intellectual property rights; or (c) warranting the third party’s products and services and its intellectual property rights.

Purchasers hereby agrees that Artery’s products are not authorized for use as, and purchasers shall not integrate, promote, sell or

otherwise transfer any Artery’s product to any customer or end user for use as critical components in (a) any medical, l ife saving or l ife

support device or system, or (b) any safety device or system in any automotive application and mechanism (including but not l imited to

automotive brake or airbag systems), or (c) any nuclear facil ities, or (d) any air traffic control device, application or system, or (e) any

weapons device, application or system, or (f) any other device, application or system where it is reasonably foreseeable that failure of the

Artery’s products as used in such device, application or system would lead to death, bodily injury or catastrophic property damage.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this do cument will

immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, an d

ARTERY disclaims any responsibil ity in any form.

© 2022 ARTERY Technology – All Rights Reserved

	1 Introduction to Bluetooth
	1.1 Generic Access Profile (GAP)
	1.1.1 Device role
	1.1.2 Advertising and scan response data
	1.1.3 Broadcast network topology

	1.2 GATT
	1.2.1 Connected network topology
	1.2.2 GATT Transactions
	1.2.3 Services and characteristics
	1.2.3.1 Profile
	1.2.3.2 Service
	1.2.3.3 Characteristics

	1.3 System framework

	2 Add custom services to BLE
	2.1 Add profiles to project
	2.2 Configure profiles in project
	2.3 Add custom services to current software architecture
	2.4 BLE interface description

	3 AT command
	3.1 Introduction
	3.2 BLE command

	4 BLE application case
	4.1 Hardware
	4.2 Software resources
	4.2.1 MCU operations
	4.2.2 BLE receives requests
	4.2.3 BLE sends requests
	4.2.4 Software download

	4.3 AT command mode
	4.4 Transparent mode
	4.4.1 UART interface
	4.4.2 USB interface

	5 Revision history

