?r ? AT32F435/437 Security Library Application Note

ANO0081
Application Note

AT32F435/437 Security Library Application Note

Introduction

This application note introduces the security library (sLib) application principle of AT32F435/437
MCUs, operation methods and example projects

Applicable products:

AT32F435

Part number
AT32F437

2021.9.8 1 Ver 2.0.0

?r ? AT32F435/437 Security Library Application Note

Contents
1 (@Y7 QT PP PPPPPPPPPPPPP 7
2 Application PrinCiPles ..o 8
2.1 Application prinCiple Of SLIDccoooiiiiiii 8
2.2 How to enable SLID ProteCHIONccovviiiiiiiiee e 9
2.3 How to disable SLIbD ProtECHON........uuuuuiiiiiiiiiiiiiii s 10
2.4 Compile and execute program in SLIDcoooiiiiiiiii e 11
2.4.1 Setting interrupt vector table as sLib instruction area not allowed 12
2.4.2 Correlation between sLib area and user Code ar€a...........ccceevveeerieeiiieeniee e, 12
3 Example applications of SLib ... 15
3.1 Example application reqUIr€MENES...........ouuiiiiiiiiiiiiiiiiieiieeieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 15
311 Hardware reqUIFEIMENTS.cuii i iiiiee ettt et e e et e e st e e e s snaee e e e e nbeee e s snbeeeeesneeeens 15
3.1.2 SOMWAre reqUIFEIMENTSiiiiiiiiie ettt e e s b e e e e annne e s 15
N @ 1= = PP PPPPPPPPPPPPPP 15
3.3 SLIB protected code: FIR 10W-pass filter.............ueuviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee 16
3.4 Project_LO: example for SOIUtion Providers..............eueeeeeiiieiiiiieiiiiiiiiiieiieeeeieeeeeeeeeee. 17
3.4.1 Generate eXeCULE-ONIY COUEocoiuiiiiiiiiiie e e 17
3.4.2 Compile security library address. ... 19
3.4.3 Enable SLibD ProteCON........coiiiiiiiei it 23
3.4.4 ProjeCt_LO @XECULION PrOCESScceiutiiieiitiieeaititee e ettt e e ettt e et e e s sabe e e e anbe e e e s aneeee s 25
3.4.5 Generate header file and symbol definition file............ccoiii e, 27
3.5 Project_L1: example fOr €N USEIScouuiiiiiiiiiiiiiiiiiiiiiiieieeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeees 28
3.5.1 Create user appliCation PrOJECTueiiiiiiiiee e 29
3.5.2 Add symbol definition file t0 Projectcooeeiiiiiiiie e 30
3.5.3 Call functions in SLIB-Protected @r€acccoeieeerieiiiiiieiiie e 31
3.5.4 ProjeCt_L1 @XECULION PrOCESSuuteiuiiiiiuieeiteeesieeeaiteeeateeesbeeesebeessseeesbeeesbeeesnneeannneas 31
3.5.5 SLIB protection in debug MOde...........coiuiiiiiiiiiii e 32
4 Integrate codes and download ... 35
4.1 Program COdes SEPArately..........cuuuuuiiiiiiiiiiiiiiiiiie et e et e e eeaaane 35
4.2 Integrate and Program COUESuuuuiiiieiiiiiiiiiiiiie e e e et eeettiia e e e e e eeeertr e e e e aeeeesenns 38

2021.9.8 2 Ver 2.0.0

ll?l_ ? AT32F435/437 Security Library Application Note

5 REVISION NISTOIY oo 41

2021.9.8 3 Ver 2.0.0

’I?F ? AT32F435/437 Security Library Application Note

List of tables

Table 1. Flash Size Of ATS2FA35/437 ...t 9
Table 2. DOCUMENT FeVISION NISTOIY.......cciiieiiiiieie et e e e e s e e e e e e s e sasnneeeeeeeeeeennnnes 41
7 | 5 7] | 1 | I |

2021.9.8 4 Ver 2.0.0

<[

5

AT32F435/437 Security Library Application Note

List of figures

2021.9.8

Figure 1. Mapping of main Flash memory featured with SLID ... 9
Figure 2. Literal pOOl @XamPIE (L)uuueriiieeeeiiiiiiieeee e e e s et e e e e e e e s e e e e e e s e snnsaeeeeeeeeeeennnnnnneeeeeeeeas 11
Figure 3. Literal pOO0l @XamMPIE (2) ...c.co i ueeiiiiiiiie ettt ettt e e e et e e e s anaaeeaeaan 12
Figure 4. Example of function in sLib area calling the function in user code area............ccccoccueeennne 13
Figure 5. Example of self-defined fuNCHONc.ooiiiiiiii e 14
Figure 6. Example appliCatiOn PrOCESS.ouuiiaiiiuiiieeaiiiee e eitte e e ettt ee et e e ettt e e e sanbee e e s anbeeeeeanreeaeaan 16
Figure 7. EXample appliCAtiONuuiiiiiieii i e e e e e e e e e e e e e e e e e e nnnannneeeeaees 16
Figure 8. FIR IOW-PASS flltEIccoiieieiiiie et e e e e e e e e e e eneeeeean 17
Figure 9. Enter Option interface iN Keil...........c.uuuiiiiiee e e e 18
Figure 10. Tick Execute-only Code iN Keil...........uuiiiieiiiiiiiiiiee e snneeee e e e 18
Figure 11. Enter Option interface iN ARooi et saeeeeeeae 19
Figure 12. C/C++ OPtIONS IN ARcoi ettt st e e st e e s sttt e e e snte e e e anbeeeessnneeeeeanns 19
Figure 13. Main Flash memory mapping and RAM Partitioncoooiuieeeiiiiiees e 20
Figure 14. Set Linker option iN Keil.........coooiiiiii et s e e 20
Figure 15. Modify SCAEr iIN KBlcooiiiiiie ettt e s st e e s snneeeeeaan 21
Figure 16. Modify SLIB RAM address iN KEILccuciiiiiiiiiiiee et e e e e naeeeeea e 21
Figure 17. Modify SLIB KEIL address in KEIL.........c.coiiiiiiiiiiiee e e e e e saneeeee e e 22
Figure 18. SLIB address definition in .iCf file ... 22
Figure 19. Address assignment in .iCf file............ueeiiri oo 22
Figure 20. Modify SLIB used RAM iN .QCF il ... 23
Figure 21. Modify SLIB used constant addreSs iN TARocuiii e 23
Figure 22. Configure ICP PrOgramMIEr........c..cuieiiiieeeiiiieeeeeiieeeeeeeieeeesstaeeesssaeeesssnseeeessseeeesannseeeeanns 24
Figure 23. Set parameters in DOWNIOAd FOMMcooiiiiiiiiiiiee et e e seeeee e 25
Figure 24. Project_LO @XECULION PIrOCESScuuuriiiiieeeeieiiiireeeeeeeessssistaeeeeaeeesassnsssassseaaeesasnnsssneeeaaees 26
Figure 25. Set MiSC CONIOIS IN KEIlcoiiiiiiiiieieee e e e e ee e e e 27
Figure 26. Contents of modified fir_filter symbol.tXt..........ccoovriiiiiii e 27
Figure 27. Set BUild ACHIONS IN TARooii e e e e e e e e e e e aaeeeeeaeeees 28
Figure 28. Edit steering_file.IXt CONENLScoiiiiiiiiie e 28
Figure 29. Modified SCAEr fil.......coiuiiiiie e 29
Figure 30. MOIfied QCf fil@........ei et 29
Figure 31. Add symbol definition file in Keil...........oooeiiiiii e 30
Figure 32. Modify symbol definition file type to “Object” file ... 30
Figure 33. Add symbol definition file iN TARoeriii e e 31
Figure 34. Project L1 @XECULION PIrOCESSccuuurriiiieeeeiiiiiireeeeeeeessssssteeeeeaeessassasnsaseeeeeeesasnnsssneseaaees 32

T 5 - T T Ver2.00

5

AT32F435/437 Security Library Application Note

2021.9.8

Figure 35. Enter Show DisassSembly At AQAIESScooeeviiiiiiiiiiee e e e 33
Figure 36. Set SNOW COdE @t AQAIESSccoiiieeiiiiiiie et e e e e e e e e e e e e e e snnneaeeeeeeeas 33
FIQUIE 37. VIBW COURSeetiiiiiiee e e ittt e e e s ettt e e e e e s et e e e e e e e e e s sns e e e e e e e e e annssaaneeeeeeeeennnsnnneneaaeeas 33
Figure 38. VIeW COUES iN IMEMIOIYuuuiiiieeieiiiiiieee e e e e s esiete e e e e e e e st e e e e e e e s ssnssaeneeeeeeesennsnnnneeeeeaeeas 34
Figure 39. SLIB_READ_ONLY start SECIOr in MEMOIYcoocuuiiiiiiiiie et e e 34
FIQUIE 40. SLIB WIILE TEST .. .eeiiii ittt ettt et e e s ettt e e s snbe e e e e snbeeeeeaneeeaeann 34
Figure 41. Write protection error INTEITUPLooiiiiii ettt e e e e saeeeeeeae 34
FIQUIE 42. SAVE SLIB COUBS ...ttt ettt ettt et e e ettt e e e sabe e e e e nbe e e e e aneeeaeaan 35
Figure 43. Generate .bin file Of SLIB COUEuuuiiiiieiiiiiee e e e e 36
Figure 44. Online programming t0 MCU iN ICP.........coiiiiiiiiiiiie e sereee e e 36
Figure 45. Offline programming t0 MCU Via AT-LINKuuiiiiieeieiiiiieeee e e e e e snneeeeee e e 37
Figure 46. End users program COUES 10 MCUccoiiiiiiiiiiiiiiiee e e e e e e e e e e e e e s snnareeeeeee s 38
Figure 47. Set OffINE PrOJECT. et e e st e e e e snreeeeaan 39
Figure 48. Add ProjeCt fileeoi et e e snreeaeean 40
- e— - - — — —— v

6 Ver 2.0.0

?r ? AT32F435/437 Security Library Application Note

1 Overview

As more and more MCU applications require complex algorithms and middleware solutions, it has
become an important issue that how to protect IP-Codes (such as core algorithms) developed by
software solution providers.

The AT32F435/437 series MCUs are designed with a security library (sLib) to protect important 1P-
Codes against being changed or read by the end user’s program.

This application note details the sLib application principle and operation methods of AT32F435/437
MCUs.

2021.9.8 7 Ver 2.0.0

_|— — AT32F435/437 Security Library Application Note

2021.9.8

Application principles

Application principle of sLib

Security library is a defined area protected by a code in the main memory, so that solution
providers can program core algorithm into this area, and the rest of the area can be used for
secondary development by end customers.

Security library contains data security library (SLIB_READ_ONLY) and instruction security
library (SLIB_INSTRUCTION); users can set part of or the whole security library as
SLIB_READ_ONLY or SLIB_INSTRUCTION.

Data in the SLIB_READ_ONLY area can only be read through I-Code and D-Code and cannot
be programmed.

Program code in the instruction security library (SLIB_INSTRUCTION) can only be fetched
(can only be executed) by MCU through I-Code bus and cannot be read through D-Code bus
(including ISP/ICP/debug mode and programs that boot from internal RAM). When reading the
SLIB_INSTRUCTION area, values are all read OxFF.

The program code and data in security library cannot be erased unless the correct code is
keyed in. If a wrong code is keyed in, in an attempt of writing or erasing the security library, a
warning message will be issued by EPPERR=1 in the FLASH_STS register.

The program code and data in security library are not erased when the end users perform a
mass erase on the main Flash memory.

Users can write the previously programmed password to the SLIB_ PWD_CLR register to
disable security library protection. When the security library protection is disabled, the chip will
perform a mass erase on the main Flash memory (including the contents of security library).
Therefore, even if the code defined by the software solution provider is leaked, the program
code will not be leaked.

The mapping of main Flash memory featured with sLib is shown in Figure 1. The program codes in

security library can be easily called and executed by end users, but cannot be read directly.

8 Ver 2.0.0

?r _Q AT32F435/437 Security Library Application Note

Figure 1. Mapping of main Flash memory featured with sLib

User_Code_Start@

USER CODE

User_Code_End@

SLIB_Start@
SLIB_READ_ONLY

SLIB_INSTRUCTION
SLIB_End@

The security library is set by sectors, and the size of each sector is subject to the specific MCUs.
Table 1 lists the main Flash size, sector size and configurable range of AT32F435/437 series

MCuUs.
Table 1. Flash size of AT32F435/437
Model Internal Flash size (Byte) Sector size (Byte) Configurable range
AT32F435xC Sector 0 ~ 127
256K 2K
AT32F437xC (0x08000000 ~ 0x0803FFFF)
AT32F435xG Sector 0 ~ 511
1024K 2K
AT32F437xG (0x08000000 ~ 0x080FFFFF)
AT32F435xM Sector 0 ~ 1007
4032K 4K
AT32F437xM (0x08000000 ~ 0x083EFFFF)

2.2 How to enable sLib protection

By default, security library setting register is unreadable and write-protected. To enable write
access to this register, security library should be unlocked first by writing OXA35F6D24 to the
SLIB_UNLOCK register. Then check the SLIB_ULKF bit in the SLIB_MISC_STS register to verify if

2021.9.8 9 Ver 2.0.0

-

b

AT32F435/437 Security Library Application Note

2.3

2021.9.8

it is unlocked successfully. If successful, write the programmed value into the security library setting
register.

The steps to enable security library are as follows:

® Check the OBF bitin the FLASH_STS and FLASH_STS2 registers to confirm that there is no
other ongoing programming operation;

® \Write 0xA35F6D24 to the SLIB_UNLOCK register to unlock the security library;

® Check the SLIB_ULKF bit in the SLIB_MISC_STS register to verify if it is unlocked
successfully;

® Set the sectors to be protected in the SLIB_SET_RANGEDO register, including the SLIB
start/end addresses;

® Set the sectors to be protected in the SLIB_SET_RANGEL1 register, including the start address
of SLIB instruction area and SLIB configuration enable bit;

Wait until the OBF bit becomes “0”;

Set the security library password in the SLIB_SET _PWD register;
Wait until the OBF bit becomes “07;

Program the code to be saved in security library;

Perform a system reset, and then reload the security library setting words;

Read the SLIB_STSO0/STS1/STS2 registers to verify the security library settings.
Note:

® [tis allowed to set security library in the main Flash memory; refer to Table 1 for the
configuration range;

® The security library code must be programmed by sectors, with its start address aligned with
the main Flash memory address;

® The interrupt vector table is in data type and usually placed in the first sector (sector0, which
should not be configured as security library instruction area) of the main Flash memory.

For details about security library setting register, refer to AT32F435/437 Series Reference Manual.

The security library can be enabled by the slib_enable() function in main.c of project_I0. In addition,
users Artery ICP or ISP tools for configuration.

How to disable sLib protection

The security library protection can be disabled by writing the previously programmed password to
the SLIB_PWD_CLR register. While disabling security library protection, MCU will perform mass
erase on the main Flash memory (including the contents of security library).

The steps to disable main Flash security library are as follows:

® Check the OBF bit in the FLASH_STS register to confirm that there is no other ongoing
programming operation;

® \Write the previously programmed password to the SLIB_PWD_CLR register;

10 Ver 2.0.0

?r ? AT32F435/437 Security Library Application Note

2.4

2021.9.8

® Perform a system reset, and then reload security library setting words;

® Read the SLIB_STSO register to verify the security library settings.

Compile and execute program in sLib

As aforementioned, program codes in the instruction security library (SLIB_INSTRUCTION) can be
fetched by MCU via I-Code bus but cannot be read via D-Code bus, which means that program
codes in SLIB_INSTRUCTION cannot read the data saved in the same SLIB_INSTRUCTION area.
For example, literal pool, branch table or constant compiled from C program code in the
SLIB_INSTRUCTION cannot be read via D-Code bus.

Only instructions rather than data can be placed in the instruction security library. Therefore, when
compiling program codes to be placed in the instruction security library, the user must configure the
compiler to generate execute-only codes to avoid generating the above mentioned data.

Figure 2 and Figure 3 shows the examples of literal pool and branch table.

The “switch()” is a jump instruction in C program, and the “sclk_source” variable is used to read the
CRM_CFG register. As shown in Figure 2, the compiled assembly code “LDR R7, [PC, #288]"
obtains the address of the CRM_CFG register in a PC (program counter) indirect addressing
manner, and the address of the CRM_CFG register is saved as a constant in the adjacent
instruction area (within the instruction security library); therefore, the data is read when the
“switch()” instruction is executed. An error will occur if there is such program code in the instruction
security library.

The example program in Section 3 introduces how to configure compiler settings to avoid error.

Figure 2. Literal pool example (1)

O0x08004798 2600 MCVS r&, #0x00
T79: sclk source = (crm sclk type)CRM-»>cfg bit.sclksts:
80:
S0x08004792A 4F39 LDR r7, [pc, #228] ; @0x0BO04880
0x0D800479C 687F LDR r7, [x7,$0x04]

0x0800479E F3C70381 UBFX r3,r7,%2, %2
81: switch(sclk_source)

mom
[

case CRM SCLK HICK:

_] main.c] startup_at32f403a_407.s] at32f403a 407_clock.c || system_at32f403a 407.c]| at32f403a 407_cm.c] at32f403a_407_gpio.c

7
78 % get sclk source */
M 79 || sclk source = (crm _sclk type)CRM->cfg bit. sclksts:
80
81 switch(sclk_source)
828 {
83 case CRM_SCLE_HICK:
84 if (((CRM—>mise3_bit. hick to_selk) != RESET) && ((CRM->miscl_bit. hickdis
85 svstem core clock = HICK VALUE * 6;
86 else
87 svstem core_clock = HICK VALUE;
88 break;
11 Ver 2.0.0

<[

? AT32F435/437 Security Library Application Note

241

242

2021.9.8

Figure 3. Literal pool example (2)

137: system core_clock = system core clock »»> div_wvalue;
Ox0200486E 4F0& LDR r7, [pc, $#24] ; BOxOBO048EB8
0x08004870 &83F LDR r7, [x7,#0x00]
0x08004872 40F7 LSR5 r7,r7,r6
O0x08004874 FEDFCO10 LDR.W rlz2, [pc, #¥16] ; E0Ox0B004888
Ox08004878 FECCTO00 STR r7, [rl2,#0x00]

138: 1}

EbﬂxGBGD&BTC BDFO ECP {rd4-r7,pc}
0x0800487E Q000 DCW 0x0000
Ox08004880 1000 DCW 0x1000
Ox08004882 4002 DCW 0x4002

Setting interrupt vector table as sLib instruction area not
allowed

The interrupt vector table contains entry point address of each interrupt handler, which is read by
MCU via D-Code bus. Generally, the interrupt vector table is located in the first sector (sectorO,
starting address: 0x08000000). Therefore, the following rules must be followed when setting the
instruction security library.

® Do not configure the first sector of the main Flash memory as sLib instruction area.

Correlation between sLib area and user code area

Program code (IP-code) protected by sLib area can call functions from the function library located
in user code area (outside the sLib area). In this case, these function addresses are contained in
the IP-Code, allowing PC (program counter) to jump to these functions when IP-Code is executed.
Once the sLib area is enabled, function address cannot be changed. At this point, addresses of
functions in the user code area must be fixed; otherwise, PC will jump to a wrong address and
cannot work properly. Therefore, when configuring the sLib area, all functions related to IP-Code
should be compiled into the sLib area. Figure 4 gives an example of the protected Function_A()
being called to Function_B() in the user code area.

12 Ver 2.0.0

?I_ ? AT32F435/437 Security Library Application Note

Figure 4. Example of function in sLib area calling the function in user code area

User_Code_Start@

Function B fixed@ ' Function_B()

{
...... ; User code area
{
User_Code_End@

SLIB_Start@
Function_A()
{
Function_B(); SLIB area
}

SLIB_End@

In addition, the standard function library of C programming language is commonly used, such as
memset() and memcpy() functions. If both IP-Code and user area code call such functions, the
above mentioned error may occur.

1) Compile into the sLib area (refer to Keil or IAR documents for details).

2) Do not use the standard function library of C programming language in IP-Code. If it is
necessary to use in IP-Code, functions to be used must be renamed. Figure 5 shows an
example of writing the my_memset() function to replace the original memset() in IP-Code

2021.9.8 13 Ver 2.0.0

ll?l_ ? AT32F435/437 Security Library Application Note

Figure 5. Example of self-defined function

void* my_memset (void *s, int c, size t n);

void arm_fir_init f32(
arm_fir instance_ £32 * 5,
uintl6é_t numTaps,
float32 t * pCoeffs,
float3Z2 t * pState,
. uint32 t blockSize)
(=
/% Assign filter taps */
S—>numTaps = numTaps;

/% Assign coefficient pointer */
S->pCoeffs = pCoeffs;

7¥ Clcar statc bDUlfer and The SiZec Of statc bulfer 1s (blocksize - numlaps — 17]*/
my_memset (pState, 0, (numTaps + (blockSize — 1u)) * sizeof(float32_t)) |

/% Assign state pointer %/
S—>pState = pState;

void* my_memset (void *s, int ¢, size t n)
=h
while (n>0)

#((char¥)s + n— -1) = (char)e:

return (s):

2021.9.8 14 Ver 2.0.0

_|— — AT32F435/437 Security Library Application Note

3 Example applications of sLib
This section introduces example applications of sLib and how to complete these applications step
by step.

The SLIB feature of AT32F435 series is the same as that of AT32F437 series. In this section, the
AT32F437 series is used for demonstration.

3.1 Example application requirements
3.1.1 Hardware requirements

® AT-START-F437 demo board with AT32F437ZMT7 chip
® AT-Link emulator for debugging

3.1.2 Software requirements
® Keil® pvision IDE (pvision V5.18.0.0 is used in this example) or IAR Embedded workbench
IDE (IAR V8.22.2 is used in this example)

® Artery ICP or ISP programming tools for enabling and disabling sLib
3.2 Overview

This application note provides two sample projects to demonstrate that software developers
develop IP-Code for end-user applications.

® Project_LO: Solution provider develops algorithm and compiles to sLib
® Project_L1: Apply algorithm by end users

The algorithm completed in Project_LO will be pre-downloaded and pre-burned to AT32F437 chip
and configured as sLib protected. In addition, the following settings are available for the end-user
applications.

® Main Flash memory mapping, showing the area occupied by sLib and the area where users
can develop programs;

® Header file that contains algorithm function definitions, and end users can call relevant
functions;

® Symbol definition file, which contains the actual address of each IP-Code function, so that
functions can be called properly by the end-user application.

2021.9.8 15 Ver 2.0.0

’I?F ? AT32F435/437 Security Library Application Note

Figure 6. Example application process

Project_LO
Programs SLIB protected code

}

Project_L1
Programs End User Code
Using SLIB protected functions

}

End user application

Software solution providers can refer to the Project_LO to develop algorithm code and refer to
Project_L1 for end-user application.

Figure 7. Example application

Provide AT32F437 Provide pre burned

chip . . IP-CODE AT32F437 chip
;) 0O — NS
2 Project_IO Project_|1

3.3 SLIB protected code: FIR low-pass filter

This example uses FIR low-pass filter algorithm provided by CMSIS-DSP library as the sLib
protected IP-Code. For details about FIR low-pass filter algorithm, refer to CMSIS-DSP relevant

documents. This application note mainly introduces how to configure sLib to protect this algorithm
and how it is called by the end-user program code.

The low-pass filter input signal in this example is a combination of two sine waves at frequencies of
1 KHz and 15 KHz, while the low-pass filter cut-off frequency is about 6 KHz. A 15 KHz signal is

filtered through the low-pass filter and outputs 1 KHz sine wave. Figure 8 shows the FIR low-pass
filter functions.

D S B S S . L1 | L] -
2021.9.8 16

Ver 2.0.0

<[

? AT32F435/437 Security Library Application Note

3.4

3.41

2021.9.8

Figure 8. FIR low-pass filter

Input signal Output signal

l 1

| - FIR Low Pass Filter - 04

b

=10° 10

i

1)l

5

CMSIS DSP library functions and files to be used are:

® arm_fir_init_f32()

It is used for initialization of filter, which is included in “arm_fir_init_f32.c” file.
® arm_fir_f32()

It is the main part of filter algorithm, which is included in “arm_fir_f32.c” file.
® FIR_lowpass_filter()

It is a FIR low-pass filter global function written by using the above two functions. It is called by the
end user and is included in “fir_filter.c” file.

® fir_coefficient.c

This C file contains coefficients (read-only constants) used by FIR filter functions, and these
coefficients are placed in read-only area in the example.

In this example, the embedded FPU and DSP instructions are used for signal processing and
floating point operation to realize accurate results and correct output signals.

Project_LO: example for solution providers

The following projects are completed in this level:
Compile the algorithm-related functions to execute-only code;

Place the algorithm program code to the main Flash memory sector 2;

® Place the filter function coefficients to the main Flash memory sector 1;
® Execute the FIR_lowpass_filter() in the main program to verify its correctness;
® |f correct, configure sector2 as the instruction security library and sectorl as read-only area,

which can be completed by calling the slib_enable() function in the main program or using
Artery ICP Programmer (recommended);

® Generate the header file and symbol definition files that are used by end-user program to call
low-pass filter functions

Generate execute-only code

Each toolchain has specific setting options to prevent the compiler generating literal pools and
branch table that can read data while executing instructions, such as “LDR Rn, [PC, #offset]".
Section 2.4 lists examples of literal pool and branch table.

For example, Keil® pvision has Execute-only Code option, which can be set as follows:

17 Ver 2.0.0

’I?F ? AT32F435/437 Security Library Application Note

Keil® pvision: Set Execute-only Code option
Operate as follows:

® Select C file group or individual C file (in this example, the C files to be protected are placed in
“fir_filter”);

® Right click and select the corresponding files (for example, the Option for File ‘arm_fir_f32.c’),
as shown in Figure 9;

Figure 9. Enter Option interface in Keil

= fir_filter
gj arm_fir_f32.c

gj arm fir init f32.c ﬁﬁ\ Options for File ‘arm_fir_f32.c'... Alt+F7
j fir_coefficient.c Remave File ‘arm_fir_f32.c

gj 1.:Ir_fl|tEF.C ﬁ Manage Project Items...

® Tick “Execute-only Code” in the C/C++, and the “--execute_only” instruction is added to the
compiler control string, as shown in Figure 10;

Figure 10. Tick Execute-only Code in Keil

Froperties C/CH l

Preprocessor Symbols
Define: |
Undefine: |
Language / Code Generation
¥ Execute-only Code [¥ Strict ANSI C Wamings:
Optimization: |:default> j [Enum Container always int Al Wamings =2
[Optimize for Time [¥ Plain Charis Signed [+ Thumb Mode
[Split Load and Store Muttiple [¥ Read-Only Position Independent ¥ Mo Auto Includes
[¥ One ELF Section per Function [+ Bead-Write Position Independent [C99 Mode
=1 =
Misc |
Controls
Compiler L—exec:ute onh.'-c: -cpu Cortex-M4 fp -D__MICROLIE g 00 —apcs=interwork —split_sections -l .M\, -
c;rglrjogl = Nine A ibraries'cmsishcmd'core _support - N Nibrares cmsis il

)4 | Cancel Defaults Help

® The arm_fir_f32.c, arm_fir_init f32.c and fir_filter.c files are in the SLIB_INSTRUCTION area,
and these files need to be set as generating execute-only code.

IAR: Set No dataread in code memory option
Operate as follows:

® Select the corresponding file in the fir_filter group; right click and select Option;

2021.9.8 18 Ver 2.0.0

ll?l_ ? AT32F435/437 Security Library Application Note

Figure 11. Enter Option interface in IAR

—=1 Wl fir_filter
artn_fir_f32.c '.
arm_fir_init_f32.c Options...
[] fir_coefficient.c

LT Mak
[£] fir_filter.c i e

Fl

e

® Enter "C/C++" interface and tick “Override inherited settings” and “No data read in code
memory”, as shown in Figure 12;

Figure 12. C/C++ options in IAR

[Exclude frarm build

Categary: | Override inherited settings |
Static Analysis
Runtime Checking
Custom Build Freproceszzor | Diagnostics | MISE&-C: 2004
WISRA-C: 1995 | Encodings | Extra Optiens
Language 1 | Langnage 2 | Code | Optimizations | COutput | List

Processor mode

farm
(@ Thumb

Fosition-independence

D Beadfwrite data (repi)

Ho dynamic readfwrite initializatis

Ho data reads in code memory

Ok] [Cancel

® The arm_fir_f32.c, arm_fir_init_f32.c and fir_filter.c files are in the SLIB_INSTRUCTION area,
and these files need to be configured as generating execute-only code.

3.4.2 Compile security library address

As aforementioned, the first sector (sector0) of the main Flash memory is used to store interrupt
vector table. Therefore, the security library is set from sector 1 in this example, with sector 2 being
set as instruction security library and sector 1 being set as read-only area. Figure 13 shows the
main Flash memory mapping and RAM patrtition. The main purpose of RAM patrtitioning is to avoid
the same RAM being used by sLib-protected code and end user code.

2021.9.8 19 Ver 2.0.0

?r ? AT32F435/437 Security Library Application Note

Figure 13. Main Flash memory mapping and RAM partition

0x20000000 0x08000000
Vector table
User RAM User code
0x08000FFF
0x2005EFFF 0x08001000
0x2005F000 SLIB_READ_ONLY
SLIB used RAM - -
Ox08001FFF
0x08002000
SLIB_INSTRUCTION
0x08002FFF
0x08003000
User code
OX083EFFFF

Keil® pvision: scatter file

Operate as follows:

® Click Project - Options for Target->Linker, untick “Use memory layout from Target Dialog”
and click “Edit” to open and modify slib-w-xo.sct file, as shown below.

Figure 14. Set Linker option in Keil

=
K Options for Target 'at_start_f403a’ [ﬁJ
Device] Target] Dutput] Listingl Tzer] C/CH] A=m Linker]Debug] Utilities]
I ™ Use Memory Layout from Target Dialog ¥/0 Base
[~ Make RW Sections Position Independent R/O Base: |0x08000000
™ Make RO Sections Position Independent RAW Base |exz0000000
I” Dont Search Standard Libraries
¥ Report might fail' Conditions as Emors faatle N |
s 1
CEter | ‘slb-wxo sct . Edi...
3& | \slib-wo s J
Misc —symdefs=fir_fitter_symbol b
controls il
Linker |cpu Cortex-M4fp *o -
contral |ibrary_type=microlib —strict —scatter " \slib-wxo sct"
string -
[1):4 Cancel Defaults Help

® Open scatter file, load the object file of the code to be placed in SLIB_INSTRUCTION area to
“LR_SLIB_INSTRUCTION” (a dedicated loading area that starts from sector2 and occupies
one sector) and modify the label to “execute-only (+X0O)”. Place the area occupied by
SLIB_READ_ONLY to a dedicated loading area named “LR_SLIB_READ_ONLY” to avoid the
compiler compiling other non-IP-Code functions to the SLIB area. The RW_IRAM2 assigns the

2021.9.8 20 Ver 2.0.0

’I?F ? AT32F435/437 Security Library Application Note

region from 0x2005F000 to 0x2005FFFF to the sLib algorithm functions to avoid the same
RAM region being used by end-user project, causing fault or error in program execution

process.
Figure 15. Modify scatter in Keil
LR_IROM1 0x08000000 0x001000 { ; load region size_region
ER_IROM1 0x08000000 0x001000 { ; load address = execution addre=s
% o (RESET, +First)
#(InRoot$5Sections)
LANY (+RO)
}
RW_IRAM1 0x20000000 0x0005F000 { : user RW data
CANY (+RW +ZI)
RW_IRAMZ2 0x2005F000 0x00001000 { ; RAM used for =lib code
fir filter.o (+RW +ZI)
}
b
LR_SLIB_READ ONLY 0x08001000 0x00001000 { ; sLib read-only area

ER_SLIB_READ ONLY 0x08001000 0=z00001000
fir coefficient.o (+R0O)

}

LR _SLIB_INSTRUCTION 0x08002000 0x00001000 { : slib instruction area
ER_SLIB_INSTRUCTION 0x08002000 0x00001000 { : load address = execution address
arm_fir_init_f32.0 (+X0)
arm_fir f32.o (+X0)
} fir filter.o (+X0)
'

LR_IROMZ 0x08003000 0x003ED000 | : user code area
ER_IROM2 0x08003000 0xQ03EDO00 { ; load address = execution address
.ANY (+RO)

® |n addition to modifying the scatter file, for the RAM used by IP-Code, users can also use the
Keil “__attribute__ ((at(address)))” descriptor to load variables to 0x2005F000, as shown in
Figure 16.

Figure 16. Modify SLIB RAM address in KEIL

zif defined (_ ICCARM_ _
static float32_t firStateF32[BLOCK SIZE + NUM_TAPS - 1] @ 0x2005F000 ;
telif defined (__ CC_ARM)
static float32_t firStateF32[BLOCK_SIZE + NUM_TAPS - 1] __attribute_|((at(0x2005F000))) :
Hendif

static float32_t firStateF32[BLOCK_SIZE + NUM_TAPS - 1]

® The start address of read-only area is sector 1 (0x08001000). To compile the constants used
by FIR low-pass filter to this address, users can modify the scatter file as aforementioned, or
use Keil “__attribute__ ((at(address)))” descriptor to load the constants to a fixed address, as
shown in Figure 17.

2021.9.8 21 Ver 2.0.0

’I?F ? AT32F435/437 Security Library Application Note

Figure 17. Modify SLIB KEIL address in KEIL

Hif defined (__ICCARM__)

const float32_t firCoeffs32[NUM_TAPS] @ 0x08001000 ={

#elif defined (__CC_ARM)

const float32_t firCoeffs32[NUM_TAPS] _ attribute_ {(at(0x08001000)))|= {

fendif
-0. 0018225230f, -0.0015879294f, +0.0000000000f, +0.0036977508f, +0.0080754303f, +0.0085302217f, -0.00(
-0. 0341458607f, -0.0333591565f, +0.0000000000f, +0.0676308395f, +0.1522061835f, +0.2229246956f, +0.25(
+0. 1522061835f, +0.0676308395f, +0.0000000000f, -0.0333591565f, —0.0341458607f, -0.0173976984f, -0.00(
+0. 00807543031, +0.0036977508f, +0.0000000000f, -0.0015879294f, -0.0018225230f

IAR: ICF file
Operate as follows:

® Open the .icf file in “\project_IO\IAR_V8.2\", and add three new loading areas as shown in
Figure 18. The SLIB_RAM region reserves the corresponding RAM (0x2005F000 to
0x2005FFFF) for the algorithm functions.

Figure 18. SLIB address definition in .icf file

/# SLIB read-onlv area */
define svmbol _ ICFEDIT region_ SLIB READ ONLY start = 0x08001000;
define svmbol _ ICFEDIT region SLIB READ ONLY end 0x08001FFF;

/% SLIB instruction area #*/

define svmbol _ ICFEDIT region SLIB INST start = 0x08002000;

define symbol _ ICFEDIT region SLIB INST end = 0x08002FFF;
define symbol _ ICFEDIT region RAM start = 0x20000000;
define symbol _ ICFEDIT region RAM end = 0xZ2005EFFF;

/% SLIB RAM region */
define svmbol _ ICFEDIT region SLIB RAM start = 0xZ005F000;
define svmbol _ ICFEDIT region SLIB RAM end 0x2005FFFF;

® In the .icf file, the area occupied by SLIB is reserved to avoid the compiler compiling other non-
IP-Code functions to the SLIB area, and the RAM region used by IP-Code is reserved.

Figure 19. Address assignment in .icf file

/% Reserved 0x08001000 ~ 0x08002FFF as SLIB area */

define region ROM_region = mem:[from _ ICFEDIT region ROM_start__ to __ ICFEDIT_region ROM_end]
-mem: [from __ICFEDIT region_SLIB_READ_ONLY_ start__ to __ ICFEDIT region_SLIB_READ ONLY end_]
-mem: [from __TCFEDIT region_SLIB_INST start__ to _ ICFEDIT region_SLIB_INST end_] :

define region SLIB_READ_ONLY region = mem:[from __ ICFEDIT_region_SLIB_READ_ONLY start__ to _ ICFEDIT_region_SLIB_READ_ONLY end_ 1:
define region SLIB_INST region = mem:[from _ ICFEDIT region_ SLIB_INST start__ to _ ICFEDIT_region SLIB_INST end_]:
Reserved 0x2005F000 ~ 0x2005FFFF as RAM used for SLIB code */
define region RAM_region = mem:[from _ ICFEDIT region RAM_start__ to __ ICFEDIT region RAM_end_]
- mem: [from _ ICFEDIT region_SLIB_RAM start__ to __ ICFEDIT region SLIB_RAM end_ J:

define region SLIB_RAM_region = mem:[from _ ICFEDIT region_SLIB_RAM_start__ to __ ICFEDIT region_SLIB_RAM_end_ J:

® For the RAM used by IP-Code, users can use the IAR @ descriptor to load variables to a fixed
address (0x2005F000) or modify the .icf file, as shown in Figure 20.

2021.9.8 22 Ver 2.0.0

?r ? AT32F435/437 Security Library Application Note

Figure 20. Modify SLIB used RAM in .icf file

/% Place
place in

/% Place
place in

place in

/% Place
place in

IP Code in instruction area which will be SLIB protected */
SLIBE _INST region { ro object arm fir f32. o,

ro cbject arm fir init f32. o,

ro objeet fir filter.o};

SLIB DATA(or CODE) in read-onlv area #*/
SLIE_READ ONLY region { ro object fir coefficient.o };

RAM region { readwrite,

block CSTACK, block HEAP };

21lib uszed sram */
SLIB_RAM region { readwrite object fir_ filter.o }:

® The start address of read-only area is sector 1 (0x08001000). To compile the constants used
by FIR low-pass filter functions to this address, users can modify the .icf file as aforementioned
or use IAR @ descriptor to a fixed address, as shown in Figure 21.

Figure 21. Modify SLIB used constant address in IAR

Hendif

#if defined (__ ICCARM__)
static float32_t firStateF32[BLOCK_SIZE + NUM_TAPS - 1] (@ 0xZ005F000 :
tZelif defined (__ CC_ARM)
static float32_t firStateF32[BLOCK_SIZE + NUM_TAPS - 1] _ attribute__ ((at(0x2005F000))) ;

static float32_t firStateF32[BLOCK_SIZE + NUM_TAPS - 1] ;

3.4.3 Enable sLib protection

There are two methods to enable sLib protection:

(1) Artery ICP Programmer (recommended)
It is recommended to use Artery ICP Programmer as follows:

® Connect AT-Link to AT-START-F437 board and power on;

® Open ICP Programmer, select AT-Link for connection, and add the HEX or BIN file generated
by Project_LO, as shown in Figure 22.

2021.9.8

23 Ver 2.0.0

AR

AT32F435/437 Security Library Application Note

Figure 22. Configure ICP Programmer

I Artery ICP Programmer_V2.4.24 ol

File | J-Link settings | AT-Link settings Target Language Help

Part Number: AT32F437ZMT7 FlashSize: 4032KB ’l _\) |_ _\)
AT-Link-EZ FW: V1.5.10

i - = =
AT-Link SN: 8DSD19510040A44401178502 ﬂ 4 = jj

SPIM FLASH_DA 0Ox 0
Memory read settings
Address Ox 08000000 Read size Ox 000003BC Data bits [8 bits v] l Read]
File info
Mo, File name File size Address range(0x) Add
1 at32f437_praject 10.hex 8936 08000000-08000453,08001000-08001073,08
] [] 3
l Flash CRC l l File CRC verify l l DownlLoad
Flash info | File:at32f437_project_|0.hex |
Address range:[0x08000000 0x08000453] Address range:[0x08001000 0x08001073] Address range:[0x08002000
0x080021171 _Address ranae:[0x08003000 0x080040071 _checksum: 0x000CABIE
Address | (1] 1 2 3 4 5] & 7 8 9 A B C [0} E F AL~
40 |23 |00 |20 (01 |30 |00 (OB |1B |36 (00 (08 |13 (36 |00 (OB @al—l
One0:8000010 17 |3 |00 |08 |(F3 |35 (00 (0B |BS (36 |00 (08 (0O |00 (00 |00 |oc6
008000020 o0 |00 |00 |00 (OO0 |00 (OO (OO |00 (OO (OO0 (OO0 |(1F |36 (00 (0B ...
008000030 F?7 |35 |00 |08 (00 |00 (OO (OO0 (1D (36 (00 (0B |21 |36 (00 |0B |%
One0:8000040 18 |30 |00 |08 (1B |30 (00 (0B (1B (30 |00 (0B (1B |30 (00 |0B |cO
g I
11:28:42 : AT-Link connection is successful. -
11:28:42 : Part Number: AT32F437ZMT7 FlashSize: 4032KB
11:28:42 : Target device connection successfully!
| B
Current Time : 2021/9/10 11:45:01 All Rights reserved by Artery Technology Co.Ltd

® Click “Download” and the “Download Form” pops up, which shows SLIB status and relevant
parameters. Set sector 1 as the start sector and sector 2 as the INSTR start sector and end
sector; set the enable password as “0x55665566” (user-defined) and tick “Enable sLib”; then
click “Start Download” to complete programming and enable sLib successfully, as shown in

Figure 23.

2021.9.8

24

|
Ver 2.0.0

’I?F ? AT32F435/437 Security Library Application Note

Figure 23. Set parameters in Download Form

F — R T S— |
" DownlLoad Form E‘_léj

sLib status
sLib status: Disable

Enable password Ox 35665566 Main Flash
Disable password Ox Start sector [Sedor 1--0x08001000 ']
INSTR start sectof | Sector 2--0x08002000 |
End sector [Sector 2--0x08002000 v]

Extra options

Erase the sectors of file size vl [7] Disable sLib before download
I
Verify Enable sLib

[7] Disable FAP before download

[] Jump to the user program [] Enable FAP after download
[7] Write software serial number{SN) i
N 08010000 [7] Button free mode
N 00000001
00000001 I

[] Write user system data

Start Download

For details about ICP Programmer, refer to ICP Programmer User Manual.
(2) Use slib_enable() in main.c

After the slib_enable() function is verified correct by low-pass filter function and then executed, the
sLib protection can be enabled. To execute this function, enable the “#define
USE_SLIB_FUNCTION” in main.c.

3.4.4 Project_LO execution process

In this example, FIR low-pass filter calculates the input signal (testinput_f32_1kHz_15kHz) mixed
with 1 KHz and 15 KHz sine waves, and the output 1 KHz sine wave is saved in testOutput, which
will be compared with the data calculated by MATLAB and saved in refOutput. If the error value is
smaller than expected (SNR larger than the preset threshold), the green LED on the board blinks;
otherwise, the red LED blinks. Figure 24 shows the Project L0 execution process.

2021.9.8 25 Ver 2.0.0

:'=/| ?I_

5

AT32F435/437 Security Library Application

Note

Figure 24. Project_LO execution process

~(

Start

)

Execute
system rest to activate
SLIB

T

l

LED3 toggle
continuously

User button
Pressed ?

yes

\ 4
Green LED4 on Execute
FIR filter
3 seconds
test

Yes

SLIB
Operate
uccessfully?

Check
FIR test
result

Success

SLIB
already
enabled?

Enable SLIB

Yes

\4

Green LED4 toggle
in infinite loop

Go through the following steps to execute this example program:
1)

Use Keil® pvision to open the Project_LO under
\utilities\AT32F435_437_slib_demo\project_I0\mdk_v5\, and then compile;

Before downloading the code, check whether the chip on AT-START-F437 board is sLib-
protected or write/read-protected (FAP/EPP). If it is protected, use ICP Programmer to disable
protection and then download the code;

()

After successful download, start to execute the code, and the on-board LED3 keeps blinking
rapidly;

®3)

(4) Press the on-board USER button to perform operation of low-pass filter;
®)

2021.9.8

Compare the computation result. If it is correct, the green LED4 keeps blinking; otherwise, the

26 Ver 2.0.0

?I_ ? AT32F435/437 Security Library Application Note

red LED2 keeps blinking;

(6) After obtaining the correct result, if the USE_SLIB_FUNCTION in main.c is defined and the
sLib is not enabled, the slib_enable() function will be executed to set SLIB. If SLIB setting fails,
the red LED2 will be always ON; if SLIB setting succeeds, the green LED4 will be ON for about
three seconds and then perform system reset to enable SLIB; then, go to step (3).

3.4.5 Generate header file and symbol definition file
The header file and symbol definition file are used when the Project_L1 calls FIR low-pass filter
functions, which is the fir_filter.h in main.c in this example.

The generation of symbol definition file is related to the specific toolchain being used.

Use Keil® pvision to generate symbol definition file
Operate as follows:
® Enter Options for Target - Linker interface;

® Add “--symdefs=fir_filter_symbol.txt” command in the “Misc controls”, as shown in Figure 25;

Figure 25. Set Misc controls in Keil

k] Options for Target "at_start_f437" @
Device | Targst | Dutput | Listing| User | C/cH+ | Asm Linker |Debug | Utilities |
I™ Use Memory Layout from Target Dialog #/0 Bass: li
[Make RW Sections Position Independent R/0 Base: IW
[Make RO Sections Position Independent RAW Base ,W

™ Dont Search Standard Libraries
V¥ Report ‘might fail' Conditions as Emors

disable Wamings: |

Scatter | \glib-wxo sct Edit...
File: | |:|

1
I'\"Iisc:l —symdefs=fir_fitter_symbol b
controls

Linker |-cpu Cortex-M4fp "o -

cortrol |Hibrary_type=microlib —strict ~scatter " \slib-wxo sct"
string -
0K | | Bomal | | Defaults Help

® After compiling the project, a symbol definition file named “fir_filter_symbol.txt” is generated
under “project_l0\mdk_v5\Objects”;

® This symbol definition file contains all symbol definitions of the project, and it needs to be
modified to only remain the definitions of low-pass filter functions to be called by end users.
The modified fir_filter_symbol.txt is shown in Figure 26;

Figure 26. Contents of modified fir_filter_symbol.txt

0x08002001 T FIR lowpass filter

2021.9.8 27 Ver 2.0.0

ART

? AT32F435/437 Security Library Application Note

3.5

2021.9.8

Use IAR to generate symbol definition file
Operate as follows:
® Select Project->Option—->Build Actions

Figure 27. Set Build Actions in IAR

, |

Categaony:

General Options
Static Analysis

Runtime Checking
C/C++ Compiler Euild Actions Configuration

gilﬁ?ft;nverter Fre-build command line:

Custom Build E]
Linker $TOOLKIT_DIEf binhisymexport. exe ——edit “$FROT_DIRfhst [:l:]
Debugger
Simulator

CADI

CMSIS DAP

GDB Server
I4et/ITAGIet
Jink/1-Trace

TI Stellaris
Mu-Link

PE micro

ST-LINK
Third-Party Driver
TI MSP-FET
TIXDS

[1]8] [Cancel

® Input the following commands to the Post-build command line:

$TOOLKIT_DIRS$\bin\isymexport.exe --edit "$PROJ_DIRS$\steering_file.txt"
"$TARGET_PATHS$" "$PROJ_DIRS$\fir_filter_symbol.0"

® The fir_filter_symbol.o is the symbol definition file to be generated, and the steering_file.txt is
saved under “project_IO\iar_v8.2", which is used to select function symbols to be generated.
Users can manually edit the contents called by sLib. As shown in Figure 28, the "show" is the
command used to select functions.

Figure 28. Edit steering_file.txt contents

show FIR lowpass filter

Project_L1: example for end users

Project L1 uses the FIR low-pass filter function that is debugged in Project_LO, programmed to
AT32F437 MCU main Flash memory and SLIB-protected. According to the header file, symbol
definition file and the main Flash memory mapping of Project_LO, end users can complete the
followings for Project L1.:

® Create an application project;

® Add the header file and symbol definition file provided by Project_LO to the project;

28 Ver 2.0.0

?r ? AT32F435/437 Security Library Application Note

3.5.1

2021.9.8

® Call FIR low-pass filter function;
® Develop and debug user’s program.
Note:

Project_L1 must use the same toolchain and the same version of the compiler as those of
Project_LO; otherwise, incompatibility problem may occur and the code provided by Project_LO
cannot be used properly. For example, Project_LO uses Keil® pvision V5.18.0.0; therefore,
Project_L1 need to use the same version.

Create user application project

The security library enabled in Project_LO occupies some specific main Flash memory sectors;
therefore, the address for Project_L1 code storage should be compiled according to the main Flash
memory mapping of Project_LO. As shown in Figure 13, sector 1 to sector 2 are occupied by
security library, which should be isolated by using the linker control file to avoid code being
compiled to this region.

Keil® pvision: scatter file

Refer to the end_user_code.sct under “project_|1\mdk_v5\’, and divide the main Flash memory into
two regions, and the middle part is the sLib-protected area. In addition, the region behind
0x2005F000 in the RAM should be reserved, as shown in Figure 29.

Figure 29. Modified scatter file

LR_IROM1 0x08000000 0x00001000 { : load region size region
ER_IROM1 0x08000000 0x00001000 { : load address = execution addres=s
%. 0 (RESET, +First)

#(InRoot$$Sections)
}.ANY (+RO)
RW_IRAM1 0x20000000 0x0005F000 { : RW data

JANY (+RW +ZI)

- 0x2005F000 ~ 0x2005FFFF RAM reserved for SLIB code

: 0x08001000 ~ 0x08002FFF is SLIB area

LR_IROM2 0x08003000 0x003ED000 { . load region size region
ER_IROM2 0x08003000 0x003ED000 { ; load address = execution address
ANY (+RO)
}
b
IAR: ICF file

Refer to the enduser.icf under “project_|1\iar_V8.2\", as shown in Figure 30.

Figure 30. Modified icf file

define region ROM_region = mem: [from __ ICFEDIT region_ROM start__ to _ ICFEDIT_ region ROM_end_]
-mem: [from __ICFEDIT region_ SLIB_start__ to _ ICFEDIT region_SLIB_end_]:

define region RAM_region = mem: [from __ ICFEDIT region_RAM start__ to _ ICFEDIT_region RAM_end_]
- mem: [from __ICFEDIT_region_SLIB_RAM_start__ to __ICFEDIT_region_SLIB_RAM_end_]:
- S . T] S) E—
29 Ver 2.0.0

’I?F ? AT32F435/437 Security Library Application Note

3.5.2 Add symbol definition file to project

The symbol definition file fir_filter _symbol.txt generated in Project LO must be added to Project_L1,
so that it can be correctly compiled and licked to the sLib-protected area code.

Add symbol definition file in Keil® pvision

Add fir_filter_symbol.txt to the project, as shown in Figure 31.

Figure 31. Add symbol definition file in Keil

L1 user

4 bsp

[J firmware
. crsis
1= filter
J fir_filter_symbel.td
[J readme

Add this file to fir_filter, and then modify its file type from “text” to “Object”, as shown in Figure 32.

Figure 32. Modify symbol definition file type to “Object” file

kJ Options for File 'fir_filter_symbol.txt" @
Froperties }
[[dir fitter_symbol bd]
File Type |Objec1 file j ¥ Include in Target Build
Size! izw Bytey I~
last change: |Fri May 21 11:14:16 2021 ~
-
Stop on Exit Code: |Hnt specified J F
Custom Arguments: |
Memory Assignment:
Code / Const: ‘:dafauh) ﬂ
Zero Inttizlized Data: ‘:dafau)b j
Cther Data: “dE{an ﬂ
0K | Cancel Defaults Help

Add symbol definition file in IAR
Add the fir_filter_symbol.o (Object) to fir_filter, as shown in Figure 33.

2021.9.8 30 Ver 2.0.0

?r ? AT32F435/437 Security Library Application Note

Figure 33. Add symbol definition file in IAR

= @ project_I1 - at_start_f._. +
M bzp .
B crmisis ™
2 W filtar

\i [fir_filter_symbaol.o
fiFFrerare L
M readme
M user ™
B Output

3.5.3 Call functions in SLIB-protected area

After the filter.h file is referred in main.c and the symbol definition file is added to the project, the
low-pass filter function in the sLib-protected area can be called, as shown below:

FIR_lowpass_filter(inputF32, outputF32, TEST_LENGTH_SAMPLES);
Where,
® inputF32: pointer containing input signal data table;
® outputF32: pointer storing input signal data table;
® TEST_LENGTH_SAMPLES: the number of signal samples to be processed.

3.5.4 Project_L1 execution process

Figure 34 shows the execution process of Project L1:
® Start execution and LED3 will keep blinking;
® Press the USER button on AT-START board, and the FIR_lowpass_filter() starts operation;

® |f the result is correct, the green LED4 will keep blinking; otherwise, the red LED2 will keep
blinking.

2021.9.8 31 Ver 2.0.0

AR

AT32F435/437 Security Library Application

Note

Figure 34. Project_L1 execution process

L)
i

LED3 toggle
continuously

User button
Pressed ?

yes

4

Execute
FIR filter
test

Check
FIR test
result

Green LED4 toggle

N <@—Success
in infinite loop

3.5.5 SLIB protection in debug mode

Development tools are used by end users to debug codes when developing applications. This
section takes Keil® pvision as an example to introduce how to protect codes in the SLIB-protected
area from being read as data in debug mode.

® Open Project_L1 and compile;

® Click “Start/Stop Debug Session” to enter debug mode;

® Right click in the “Disassembly” interface and select “Show Disassembly at Address”, as
shown in Figure 35.

2021.9.8

32

Ver 2.0.0

AR

AT32F435/437 Security Library Application

Note

2021.9.8

Figure 35. Enter Show Disassembly at Address

|- | =

| = == | L=y mrstaterse

v ok FT| W] WO LY W [T N

lDEs=ea 0 - =-8-3-8-| -

@ Disassembly LN -]
- Ox08003E52 4770 BX 1r ~
b 94: AT32_Foard Init():
as:
98: /* Configure Flash to generate ||| Mied Mode error occur *
|E0x08003E54 2804 cup 0, #0
0x08003ES6 D106 BNE 0x080 Assembly Made
97: EInshle_Flash INTi): Address Range »
a6:
5o: Show Disassembly at Address..
100: /% Wait for KEY Button to be p ST G
0x08003ES8 45904 LDR ri, [p
ox0S003ESA 6809 LDR 1o lr #{} Runto Cursor line Ctri=F10
101: while (AT32_BUTTCN_State (BUTTCN) e e
102: {
0Ox0S003ESC FO510104 ORRS ri,r1 O Enable/Disable Breakpoint Ctri+F9
0x08003E6D 4408 LDR rz, [p
. Ox08003E62 6011 STR r1, [r Insert Tracepoint at ‘0x08003E54... »
104: Delay ms (300} Enable/Disable Tracepoint
105: 3
106 Inline Assembly...
107: /* Turn Off LEDI */ Load Hex or Object file...
0x08003E64 EOOS 0x080
0x0800IE66 4907 LOR £1,0P Instruction Trace v N
7l Execution Profiling » >
_] main.c = Insert/Remove Bookmark CtrisF2 v &
7 B callStack 3y copy Ctri=C =B

L Lib Wl.x.xhiTUtilities)) AT32F4034 3

Name

Cocation/V... Type

Figure 36. Set Show Code at Address

® Enter the address “0x08002000” of SLIB_INSTRUCTION start sector (sector 2);

Show Code at Address

28]

Address:

|m|:-s[:-[:-2[:-[:-|:1

Go To | ‘

® As shown in Figure 37, codes from 0x08002000 are all OxFFFFFFFF;

Figure 37. View codes
=:0x08002000 FFFFFFFF DCD 0xFFFFFFFF
0x08002004 FFFFFFFF DCD 0xFFFFFFFF
0x08002008 FFFFFFFF DCD 0xFFFFFFFF
0x0800200C FFFFFFFF DCD 0xFFFFFFFF
0x08002010 FFFFFFFF DCD 0xFFFFFFFF
0x08002014 FFFFFFFF DCD 0xFFFFFFFF
0x08002018 FFFFFFFF DCD 0xFFFFFFFF
0x0800201C FFFFFFFF DCD 0xFFFFFFFF
0x08002020 FFFFFFFF DCD 0xFFFFFFFF
0x08002024 FFFFFFFF DCD 0xFFFFFFFF
0x08002028 FFFFFFFF DCD 0xFFFFFFFF

in Figure 38.

33

® Similarly, enter address “0x08002000” in “Memory” window, and codes are all OXFF, as shown

Ver 2.0.0

’I?F ? AT32F435/437 Security Library Application Note

Figure 38. View codes in Memory

Memory 1

Address: | k02002000

0x08002000: FF F
0x08002022: FF F
0x08002044: FF F
O0x08002066: FF F
0x08002088: FF F
0x0800208%: FF F
0x080020CC: FF F
0x080020EE: FF F
0x08002110: FF F

® In the “Memory”, enter the address “0x08001000” of SLIB_READ_ONLY start sector (sector
1); this region is allowed to be read through D-Code bus, so that the original values can be
found, as shown in Figure 39.

Figure 39. SLIB_READ_ONLY start sector in Memory

Address: |(x08001000

Ox08001000: B9 E1 EE BA 12 22 DO BaA 00 00 00 00 F7 55 72 3B CF 4E 04 3C 58 C2 0B
Ox08001022: 0B BD 9C A3 08 BD 00 00 00 00 OA 82 B8R 3D FO DBE 1B 3E S5F 46 &4 3E 08
Ox08001044: OA 82 8A 3D 00 00 OO 0O SC A3 08 BD &8 DC OB BD SE 85 BE BC 00 00 00
Ox080010g6: 72 3B 00 00 00 00 12 22 DD BA E9 E1 EE BA FF FF FF FF FF FF FF FF FF

Ox08001088: FF
Ox080010&4: FF
Ox080010CC: FF

® Double click the value of 0x08002000 in the “Memory” window, and a warning message will be
issued by setting EPPERR=1 in the FLASH_STS register, indicating the protection is enabled.

Figure 40. SLIB write test

=-5TS 000000010
ODF r
EPPERR
PRGMERR | I~
OBF r

® In case of enable write protection error interrupt, continuing execution will enter the interrupt

program.
Figure 41. Write protection error interrupt
115 void FLASH IRQHandler (void)
116 = {
I 117 \ if (flash_flag get (FLASH_EPPERR_FLAG))
1185 {
119 flash flag clear (FLASH EPPERR_FLAG)
120 delav_ms (500) :
121 + }
122 | }

2021.9.8 34 Ver 2.0.0

’I?F ? AT32F435/437 Security Library Application Note

4

4.1

Integrate codes and download

After codes of the solution provider and end user are configured, download to the same MCU on
the premise of guaranteeing code security. Project_L0O and Project_L1 are used to introduce two
downloading methods for reference.

This operation involves offline downloading mode of AT-Link. For details, refer to operation
manuals of ICP and AT-Link.

Program codes separately

Firstly, the solution provider programs SLIB codes to MCU; then, the end user programs application

codes to MCU. The process is as follows

(1) Method A: The solution provider uses ICP tool to save the SLIB code in the compiled project
as BIN or HEX file: download the complete project to MCU (do not configure SLIB and FA),
read the corresponding SLIB codes (0x08001000~0x08002FFF) by using the memory access
function, and then click “File-Save Flash data as” to save codes as BIN or HEX file. In this
example, it is named “slib.bin”, as shown in Figure 42.

Figure 42. Save SLIB codes

[Artery ICP Programmer_V2.424 ——— . s e S
File | J-Link settings AT-Link settings Target Language Help
Save file as ...
e e ’I ? r ?
-
| Save flash data as... | . VL5.10 +
Make encryption file D19510040A44401178502 j&' 41_1 77
Exit 0
Memory read settings
Addgess Ox 08001000 Read size Ox 2000 Data bits lB bits VI [Read l
File info
Mo. File name File size Address range(Dx) Add
1 at32f437_project_0.hex 2936 08000000-08000453,08001000-08001073,08
1 | M 3
l Flash CRC l File CRC verify I l DownlLoad
Flash info | File:at32f437_project_0.hex |
Address range:[0x08001000 0x08002FFF] checksum: 0x001EF9SE
Address 0 1 2 3 4 5 & I 8 9 A B C o] E F e -
BS |E1 |EE |BA |12 |22 DO |BA (00 |00 |00 |00 |F7 55 |72 |3B |&H —l
008001010 CF |4E |04 |3C |58 |C2 (0B |3C (00 |00 (DO |BO |9E |85 |BE |BC |
0x08001020 g8 |DC |0B |BD |(9C |A3 |08 |BD (00 |00 (0O |00 |(0A |82 |2A |3D |[#:
Ox08001030 FO |DB |1B |3E |5F |46 |64 |3E |06 |41 |80 |3E |5F |46 |B4 |3E |fT:
O0B001040 FO (DB |18 |[3E |0DA |82 |(BA |3D (00 |00 |00 (00 |9C |A3 |08 |BD |fTr
1 D)) i
13:07:01 : Verification successfully ! | -
13:07:10 : Memory reading......
7 | 5 7] | 1 | I | A
2021.9.8 35 Ver 2.0.0

’I?F ? AT32F435/437 Security Library Application Note

Method B: The solution provider uses the compiled project to generate a .bin file directly, and
take the corresponding section in the SLIB area. For example, in the KEIL project, add “fromelf.exe
--bin --output .\Listings\@L.bin !L” in the “user” option to generate a .bin file of the corresponding
firmware, and add a suffix “.bin” to the SLIB area file. In this example, they are
“ER_SLIB_INSTRUCTION.bin” and “ER_SLIB_READ_ONLY.bin”, corresponding to the SLIB-
INSTRUCTION file (0x08002000) and SLIB-READ-ONLY file (0x08001000), as shown in Figure
43.

Figure 43. Generate .bin file of SLIB code

PV e e e —— [e=—
Device | Targst | Output | Listing User | C/C++ | Asn | Linker | Debug | Utilities |
Command Items User Command w Stopon Bid.. S
[Before Compile C/C++ File
[~ Run=1 5| Mot Specified ™
[~ Run#2 5] Mot Specified T
£ Before Build/Rebuild ER IROM1
I Run#l 5] Not Specified T~ -
™ Run#2 (3] Mot Specified | - | [ERIROMN2Z
[=--After Build/Rebuild
¥ Run#1 fromelf.exe --bin --output \Listings\@L.bin |L J_ﬂ Mot Specified ™ L] ER_SUE_INSTRU CTION
[~ Run#2 5| Mot Specified T~
| ||ER_SLIB_LREAD_OMNLY

(2) Use ICP Programmer to program the .bin file to MCU, as shown in Figure 44.

Figure 44. Online programming to MCU in ICP

[Artery ICP Programmer_V2.4.24 = 2 [DownLoad Form [ESREEE]
File J-Link settings ~ AT-Link settings Target Language Help sLib status
Lih ctatuc: Dicabla
Part Number: AT32F437ZMT7 FlashSize: 4032KB “:,I ?l_ ?
. - Enable password Ox 55665566 Main Flah
AT-Link-EZ ~ FW:VL5.10 —
AT-Link | AT-Link SN: £DSD19510040A44401178502 3&' f"i# jj Disable password Ox tart sector Sector 1-0x03001000 ~
: Disable sLib NSTR start sector| Sector 2--0x08002000 ~
End sector Sector 2--0x08002000 =
Memory read settings Extra options
Address Ox 03000000 Read size Ox 00000454 Databits [8bits v | Read | [Erase the sectors of file size =] I Disable stib before downlaad
File info Verify Enable sLib
[C] Disable FAP before download
- . Add
1 ER_SLIB_READ_ONLY.bin 116 08001000-08001073 [Z] Jump to the user program [C] Enable FAP after download
2 ER_SLIB_INSTRUCTION.bin 280 08002000-08002117 | 7] Write software serial number(SN)
08010000 [7] Button free mode
00000001
[Flash CRC] l File CRC verify] [DownLoad]
1 00000001
Flash info | Fil:ER_SLIB_INSTRUCTION.bin ‘ N
r
Address range:[0x08002000 0x08002117] ~ checksum: 0x000077A3 [Write user system data
a
Address o 1 2 3 4 5 13 7 8 9 A B < o E F AL~
D B3 |FF |47 (06 (46 |OF |46 (%0 (46 |20 |25 |4F |EA (58 |19 |-(E
Ox0B002010 4 [F2 |00 |03 |c2 |F2 |05 (03 |41 |F2 |00 |02 [cO [F6 |00 |02 |O?
0x0B002020 1D |21 (01 [AB (00 |95 (00 |FO |58 |F8 |00 |24 |0C |EO |04 |FB |1=¥
0x0B002030 05 |Fo (07 [EB |80 |02 |04 |FB (05 |FO |06 |EB B0 |01 |2B |46 |cF i J
0x08002040 0L A8 |00 |F0 05 |F& |64 |1C [4C |45 |FO D3 |BD |E8 FF &7 =7 Start Download
aF 6 —

(3) End users also can use ICP Programmer to set an offline project and save it to AT-Link, and
then complete offline programming to MCU through AT-Link, as shown in Figure 45.

2021.9.8 36 Ver 2.0.0

AR

AT32F435/437 Security Library Application Note

Figure 45. Offline programming to MCU via AT-Link

-
i7" AT-Link Setting

._---_E‘_Iilﬂ

AT-Link settings | AT-Link offline config settings |AT-Lir1k offline download statu5|

Offline project I
Project name slib_project Device |AT32F437 vl IAT32F437ZM'I7 ']
B Eil Eil Ackd (0} £t loca... Add

1 ER_SLIBE_READ_ONLY.bin
2 ER_SLIB_INSTRUCTIOM.bin

116
280

ga
08001000-08001073
08002000-08002117

< |

LU

| »

Erase option |Erase the sectors of file size

7

[] Download times
[7] Encryption transmit
[] Write user system data

[T] Enable FAP after download

Verify

| Software serial number(SN) | SPIM settings | sLib settings |

Enable sLib
sLib enable password Ox

55665366

Download interface

[7] Reset and run

[7] Disable sLib before download

DOSITION Wialh Flasi

Start sector [5ector 1--0x0B001000 v]

INSTR start sector |Sector 2--0x08002000 ~|

End sector

’5eclor 2--0x08002000 ~]

l Load parameters l l Save parameters l

Open project l [Save project file

l Save project to AT-Link H Close l

(4) After completing step2/3, end users can get the MCU with programmed SLIB area (SLIB

status: enabled), and program the application code to MCU through online or offline

programming, as shown in Figure 46.

2021.9.8

37

Ver 2.0.0

AR

AT32F435/437 Security Library Application Note

Figure 46. End users program codes to MCU

{7 Artery ICP Programmer_V2.4.24

= = i DownlLoad Form

File J-Link settings

AT-Link settings

AT-Link-EZ FW: V1.5.10

Memory read settings

Part Number: AT32F437ZMT7

AT-Link _-| AT-Link SN: 8DSD19510040A44401178502

Target Language Help sLib status

Enable password Ox 55665566

FlashSize: 4032KB

Disable password Ox

D -

Extra options

Main Flash

Start sector Sector 1--0x08001000 -

INSTR start sector| Sector 2--0x08002000 -

End sector Sector 2--0x08002000 -

~| [Disable sLib before download

Address Ox 08001000 Read size Ox 00000074 Databits [8bits v| | Resd | [Erase the sectors of file size
—
File info Vit
N, 5l Eilosi dd. oD Add

1 [t30f437_project |1hex 7364

DSDDDDDD-DEDDDMS,DSDDSDDD-DEDMBTF’ [[] Jump to the user program

[C] Write software serial number(SN}

08010000

r

Flash info | Fle:at32f437_project |Lhex |

| 00000001
| Fashcrc | [Fie creverty | [DownLoad

00000001

Address o 1 2 3 4 5
38 |13 (00 |20 (01 |30
0x08000010 F3 |35 (00 |08 |[CF |35
0x08000020 00 |00 (00 |00 (00 |00
0x08000030 D3 |35 (00 |08 (00 |00

0x08000040 18 |30 (00 |08 (1B |30

Address range:[0x08000000 0x08000443] Address range:[0x08003000 0x0800487F] checksum: Ox000A5392

[] Write user system data
6 7 8 |9 allslc b E |F
00 |08 |F7 (35 |00 (08 |EF (35 00 |08 |8z
00 |08 (91 (36 |00 |08 (00 |00 (00 |00 |2.%
00 (00 (00 (00 |00 |00 |FB |35 (00 |08 I

00 |00 |F9 |35 |00 |08 |FD |35 |00 |08 7.

[C] Enable sLib
[C] Disable FAP before download

[C] Enable FAP after download

[] Butten free mode

00 08 (1B |30 (00 |08 (1B |30 |00 |08 |0

. i

- Start Download

4.2

Integrate and program codes

Integrate the SLIB code of solution provider and the end user application code to an offline project,
and then download the integrated code to MCU through AT-Link offline programming. The process

is as follows:

(1) The solution provider handles the compiled project as aforementioned to get a slib.bin file;

(2) The solution provider uses ICP Programmer to generate an offline project and save it to PC.
Parameters (such as downloads, project file binding to AT-Link and enable FAP after
download) can be configured as needed. Save the offline project as follows.

Note: The offline project is encrypted. To enhance security, the solution provider also can set the slib.bin file
as an encrypted slib.benc file and then add it to the offline project. In this case, the offline project can only be
used on the AT-Link with the corresponding encryption key.

2021.9.8

38

Ver 2.0.0

AR

AT32F435/437 Security Library Application Note

Figure 47. Set offline project

I AT-Link Setting

= — [ESYEEE=C=)

AT-Link settings | AT-Link offline config settings |AT—Link offline download 5tatus|

Offline project [vl Delete

Project name slib_project

Device [AT32F437 = |[AT32R4372MT7 -|
No. [Fiermame Fitesize—fuddr TaTTgetoRy Storage loca.. Add
1 ER_SLIB_READ_ONLY.bin 116 08001000-08001073
2 ER_SLIE_INSTRUCTION bin 280 0B002000-08002117
4 [] +
Erase option IErase the sectors of file size ‘]

[7] Download times

Download interface

[T Encryption transmit Verify [] Reset and run

[C] Write user system data
[”] Enable FAP after download

Software serial number(SN) | SPIM settings sLib settings ‘

Enable sLib Main Flash

i 55665566
sLib enable password Ox e | -
[7] Disable sLib before download INSTH start sector
| - [ﬁ] 17 AT-Link project file settings E‘_&J

| toed parameters

Save parameters

This project is only used at the specified AT-Link.

AT-Link SN : CFD275220040B56D0117C502

Open project

s mrees afly sl e
Save project file

[Save project to AT-Link H Close]

AT-Link AIN :

FOOFA432DO013A913

L e

(3) After obtaining the offline project, the end user should use ICP Programmer to open the project
file and add the application codes to the offline project; then save to PC or AT-Link, and
perform offline download. Figure 48 shows how to add the project file.

Note: To protect codes from being leaked or decoded, do not change other settings when adding code file to
the offline project, which requires the solution provider to configure the final settings in advance.

B S S .
2021.9.8

Ver 2.0.0

,/|Q|- ? " AT32F435/437 Security Library Application Note

Figure 48. Add project file

- v ™

-
i AT-Link Setting

AT-Link settings | AT-Link offline config settings |AT-Link offline download statu5|

Offline project ’ v] Delete

Project name slib_project Device |AT32F437 AT32F437IMTT
No. File name File size Address range(0x) Storage loc: * i Add I
1 ER.SLIB_READ_ONLY.bin 116 02001000-08001073 S Delete
2 ER_SLIB INSTRUCTION.bin 220 02002000-08002117 |
2 A MAIT memtart 11 hmns 1nn7 NoANANMAN ANNNAAD k™
< 1 3 |
Erase option |Erase the sectors of file size |
Download times |0 Download interface |SWD
Encryption transmit Verify Reset and run
|

Write user systemdata . |

Enable FAP after download

Software serial number(SN) | SPIM settings | sLib settings

Enable sLib sLib position Main Flash
sLib enable password s R
12 S el U Firhi wewien Sector 1--0x08001000 |
Disable sLib before download INSTR start sector | Sector 2--0x08002000
sLib disable password Ox End sector Sector 7--0x0B002000
Load parameters Save parameters
l Open project l [Save project file Save project to AT-Link l l Close l |
This project is only used once.
| This project is only used at the specified AT-Link.
— ————— = ———
— — —rr 1 rr—xr T’ T’ T T " EEE— S S SE—

2021.9.8 40 Ver 2.0.0

?r ? AT32F435/437 Security Library Application Note

5 Revision history
Table 2. Document revision history
Date Version Revision note
2021.9.8 2.0.0 Initial release.
D S B S S . 1 | I |

2021.9.8 41 Ver 2.0.0

?r ? AT32F435/437 Security Library Application Note

IMPORTANT NOTICE — PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services, and ARTERY assumes no liability

whatsoever relating to the choice, selection or use of the ARTERY products and services described herein.

No license, express or implied, to any intellectual property rights is granted under this document. If any part of this document deals with any
third party products or services, it shall not be deemed a license grant by ARTERY for the use of such third party products or services, or any
intellectual property contained therein, or considered as a warranty regarding the use in any manner whatsoever of such third party products

or services or any intellectual property contained therein.

Unless otherwise specified in ARTERY’s terms and conditions of sale, ARTERY provides no warranties, express or implied, regarding the
use and/or sale of ARTERY products, including but not limited to any implied warranties of merchantability, fitness for a particular purpose
(and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right.

Purchasers hereby agrees that ARTERY’s products are not designed or authorized for use in: (A) any application with special requirements
of safety such as life support and active implantable device, or system with functional safety requirements; (B) any air craft application; (C)
any automotive application or environment; (D) any space application or environment, and/or (E) any weapon application. Purchasers’
unauthorized use of them in the aforementioned applications, even if with a written notice, is solely at purchasers’ risk, and is solely

responsible for meeting all legal and regulatory requirement in such use.

Resale of ARTERY products with provisions different from the statements and/or technical features stated in this document shall
immediately void any warranty grant by ARTERY for ARTERY products or services described herein and shall not create or expand in any

manner whatsoever, any liability of ARTERY.

© 2021 Artery Technology -All rights reserved

2021.9.8 42 Ver 2.0.0

	1 Overview
	2 Application principles
	2.1 Application principle of sLib
	2.2 How to enable sLib protection
	2.3 How to disable sLib protection
	2.4 Compile and execute program in sLib
	2.4.1 Setting interrupt vector table as sLib instruction area not allowed
	2.4.2 Correlation between sLib area and user code area

	3 Example applications of sLib
	3.1 Example application requirements
	3.1.1 Hardware requirements
	3.1.2 Software requirements

	3.2 Overview
	3.3 SLIB protected code: FIR low-pass filter
	3.4 Project_L0: example for solution providers
	3.4.1 Generate execute-only code
	3.4.2 Compile security library address
	3.4.3 Enable sLib protection
	3.4.4 Project_L0 execution process
	3.4.5 Generate header file and symbol definition file

	3.5 Project_L1: example for end users
	3.5.1 Create user application project
	3.5.2 Add symbol definition file to project
	3.5.3 Call functions in SLIB-protected area
	3.5.4 Project_L1 execution process
	3.5.5 SLIB protection in debug mode

	4 Integrate codes and download
	4.1 Program codes separately
	4.2 Integrate and program codes

	5 Revision history

