
AT32 MCU CAN Quick Start Guide

2022.7.19 1 Ver 2.0.1

AN0095

Application Note

AT32 MCU CAN Quick Start Guide

Introduction
The CAN (Controller Area Network) is a distributed serial communication protocol which realizes real-
time and reliable data communication between nodes, compliant with the CAN 2.0 specification (2.0A
and 2.0B). This application note introduces CAN protocol, AT32 MCU CAN application flow and
examples of AT32 MCU CAN application.

Note: The corresponding code in this application note is developed on the basis of V2.x.x BSP
provided by Artery. For other versions of BSP, please pay attention to the differences in usage.

Applicable products:

Part number

AT32F403A series
AT32F407 series
AT32F403 series
AT32F413 series
AT32F415 series
AT32F421 series
AT32F425 series
AT32F435 series
AT32F437 series

AT32WB415 series
AT32F402 series
AT32F405 series
AT32F423 series
AT32L021 series

AT32 MCU CAN Quick Start Guide

2022.7.19 2 Ver 2.0.1

Contents

1 Introduction to CAN ... 6

2 CAN protocol .. 7

2.1 CAN bus topology .. 7

2.2 CAN bus physical layer features ... 7

2.3 Frame type ... 8

2.4 Frame structure .. 10

2.5 Bit stuffing... 10

2.6 Bit format ... 11

2.7 Synchronization mechanism ... 12

2.8 Arbitration mechanism .. 13

2.9 CAN error handling mechanism .. 14

2.9.1 Error type .. 14

2.9.2 Error state ... 15

3 AT32 CAN .. 16

3.1 Function overview .. 16

3.2 Message transmission .. 16

3.3 Message reception ... 17

3.4 Filter ... 19

3.5 CAN baud rate and sample point .. 21

3.5.1 Baud rate formula ... 21

3.5.2 Sample point formula ... 21

3.5.3 Baud rate configuration tool ... 22

4 Application case 1: CAN communication in normal mode 23

4.1 Function ... 23

4.2 Resources .. 23

4.3 Software design .. 23

4.4 Test result ... 27

AT32 MCU CAN Quick Start Guide

2022.7.19 3 Ver 2.0.1

5 Application case 2: CAN receive filter ... 28

5.1 Function ... 28

5.2 Resources .. 28

5.3 Software design .. 28

5.4 Test result ... 35

6 Application case 3: CAN debugging in loopback mode 36

6.1 Function ... 36

6.2 Resources .. 36

6.3 Software design .. 36

6.4 Test result ... 40

7 Revision history ... 41

AT32 MCU CAN Quick Start Guide

2022.7.19 4 Ver 2.0.1

List of tables

Table 1 CAN frame types ... 8

Table 2 Description of bit segments ... 11

Table 3 Sample point settings .. 21

Table 4 Document revision history ... 41

AT32 MCU CAN Quick Start Guide

2022.7.19 5 Ver 2.0.1

List of figures

Figure 1 CAN bus topology .. 7

Figure 2 CAN bus level characteristics .. 8

Figure 3 CAN frame structure .. 9

Figure 4 CAN standard data frame .. 10

Figure 5 Normal bit timing .. 12

Figure 6 Resynchronization jump .. 13

Figure 7 Arbitration mechanism ... 14

Figure 8 CAN node error states ... 15

Figure 9 AT32 CAN function overview ... 16

Figure 10 Message transmission process ... 17

Figure 11 Message reception process ... 19

Figure 12 32-bit identifier mask mode ... 20

Figure 13 32-bit identifier list mode ... 20

Figure 14 16-bit identifier mask mode ... 20

Figure 15 16-bit identifier list mode ... 20

Figure 16 CAN BitRate configuration tool ... 22

Figure 17 CAN level converter schematics diagram ... 23

Figure 18 CAN level converter schematics diagram ... 28

Figure 19 CAN loopback mode ... 36

AT32 MCU CAN Quick Start Guide

2022.7.19 6 Ver 2.0.1

1 Introduction to CAN

The Controller Area Network (CAN) is designed to efficiently process a large amount of messages

with minimum CPU usage. It is a serial bus protocol created in 1986 by the German company

BOSCH and ISO standardized with ISO11898 and ISO11519, which gain popularity in the

automotive network domain in Europe. It has been recognized for high performance and reliability

and widely used in industrial automation, ships, medical facilities and industrial equipment, etc.

Features of CAN protocol:

 Multi-master control

When the bus is idle, all nodes can start sending messages. When multiple nodes start

sending at the same time, the bus proceeds arbitration according to the identifier (ID), and

the one with the lowest ID (highest priority) wins and gets the right to send while all other

nodes (with lower priority) switch to a receiving mode. It should be noted that ID does not

the node address but the priority of message to be sent.

 Flexibility

As mentioned, there is no address information of nodes on the CAN bus; therefore, adding

or removing a node does not affect the hardware and software of other nodes on the CAN

bus.

 High reliability

CAN protocol features are error detection, error notification, fault confinement and error

handling. Every node on the CAN bus can detect an error (error detection) in a message.

If any error is found, the discovering node will transmit an error frame to notify other nodes

(error notification). Each node has an error counter internally that accumulates error count

value every time an error is detected. When the accumulative error count value of one

node is greater than 256, this fault node is disconnected from the CAN bus to avoid

affecting other nodes (fault confinement). If the node detects an error when sending a

message, the erroneous message will be retransmitted after the fault is cleared (error

handling).

 Fast and long-range communication

The rate can reach 1 Mbps (communication distance < 40m) and communication distance

can reach 10km (rate < 5Kbps).

 Multiple nodes

The number of nodes on a CAN bus is not limited theoretically, but the ultimate number is

determined by the bus time delay and electrical load. Lowering or increasing the

transmission rate can correspondingly increase or decrease the number of nodes.

With these features, the CAN is suitable for interconnection of industrial process monitoring devices

and is recognized as one of the most ideal fieldbuses for industrial applications. The CAN protocol

is ISO standardized with ISO11898 and ISO11519, in which ISO11898 is the CAN high-speed

communication standard with a communication speed of 125 Kbps~1 Mbps and ISO11519-2 is a

low-speed communication standard with a communication rate of 125 Kbps or less. In this

application note, the ISO11898 standard is adopted and the communication rate is 1 Mbps.

AT32 MCU CAN Quick Start Guide

2022.7.19 7 Ver 2.0.1

2 CAN protocol

This section mainly introduces the CAN bus topology, characteristics of physical layers, CAN frame

types, frame structure, bit stuffing mechanism, bit format, synchronization mechanism, arbitration

mechanism and error handling mechanism. For more details on CAN protocol, refer to BOSCH CAN

specification.

2.1 CAN bus topology

As shown in Figure 1, the CAN bus consists of CANH and CANL lines. Each node is connected to

CAN bus through a short branch line, and can transmit and receive data equally. In addition, there

is a120 Ω terminal resistor at each end of CAN bus for impedance matching to reduce reflection.

Figure 1 CAN bus topology

C
A

N
 n

o
d
e
 n

C
A

N
 n

o
d
e
 2

C
A

N
 n

o
d
e
 1 MCU

CAN

controller

CAN

transceiver

CAN
TX

CAN
RX

12
0Ω

12
0Ω

...

CANH

CANL

CANH

CANL

CANH

CANL

... ...

2.2 CAN bus physical layer features

As shown in Figure 2, the dominant level corresponds to logical “0” (voltage difference between

CANH and CANL is about 2.5 V) and the recessive level corresponds to logical “1” (voltage

difference between CANH and CANL is 0 V). On the CAN bus, the dominant level always overrides

a recessive level, which means that the CAN bus level will be dominant is any number of nodes in

the network output a dominant level, and the CAN bus level will only be recessive when all nodes in

the network output a recessive level.

AT32 MCU CAN Quick Start Guide

2022.7.19 8 Ver 2.0.1

Figure 2 CAN bus level characteristics

1

2

3

4

5

[V]

CAN bus physical

layer signal

CAN bus logical

value
 1

 0

Dominant

level

Recessive

level
Recessive

level

CANH line

CANL line

2.3 Frame type

There are five types of frames in CAN protocol, as shown in Table 1. The data frame and remote

frame are transmitted and received by users, while the error frame, overload frame and inter frame

are transmitted by hardware of nodes on CAN bus according to the specific status, which is

unnecessary to be or cannot be controlled by users.

Table 1 CAN frame types

Frame type Description

Data frame It carries data from transmitting node to receiving node.

Remote frame It is sent by a node to request the transmission of a data frame with the

same ID by another node.

Error frame It is sent when error information is detected on any node.

Overload frame It requests a delay between the preceding and subsequent data frame (or

remote frames).

Inter frame It is also known as inter-frame space, which is used to separate the above

four types of frames.

The structure of each frame type is shown in Figure 3.

AT32 MCU CAN Quick Start Guide

2022.7.19 9 Ver 2.0.1

Figure 3 CAN frame structure

Inter-frame

space
Data frame (standard identifier)

44 + 8* N

Arbitration field

12

ID

6

Control field Data field

8* N

CRC field

16

CRC

Ack field

2
7

EOFDLC
S

O
F

R
T

R

ID
E r0

A
C

K

Data frame (extended identifier)

64 + 8* N

Inter-frame

space or

overload frame

ID EOFDLC

S
O

F

R
T

R

ID
E r0

A
C

K

Arbitration field

12

Arbitration field

20

Control field

6 8 * N

Data field CRC field

16

CRC

Ack field
2

7

S
R

R r1

Remote frame

44

Inter-frame

space or

overload frame

Arbitration field

12

ID

6

Control field CRC field

16

CRCDLC

Ack field
2

7

EOF

A
C

K

R
T

R

r0ID
E

S
O

F

Data frame

or remote

frame Error frame

Inter-frame

space or

overload frame

Error flag Error echo Error delimiter

6 6 8

Data frame or

remote frame

Intermission
Suspend

transmission
Bus idle

3 8

Any frame

End of frame or

error delimiter or

overload delimiter Overload frame

Inter-frame space

or error frame

Overload

flag

Overload

echo

Overload

delimiter
6 6 8

Notes:

0 <= N <= 8

SOF = Start of frame

ID = Identifier

RTR = Remote transmission request

IDE = Identifier extension bit

r0 = Reserved bit

DLC = Data length code

CRC = Cyclic redundancy code

Error flag: 6 dominant bits if error

active; else, 6 recessive bits.

Suspend transmission: Only applies to

error passive node.

EOF = End of frame

ACK = Acknowledge bit

Inter-frame

space or

overload frame

Inter-frame space

Inter-frame

space

Inter-frame

space

AT32 MCU CAN Quick Start Guide

2022.7.19 10 Ver 2.0.1

2.4 Frame structure

This section mainly introduces standard data frame. For other frame types, refer to Figure 3 for

better understanding.

The CAN data frame is composed of seven fields as below:

SOF (Start of frame): It is dominant of 1-bit. The CAN bus level is recessive when the CAN bus is

in an idle state; therefore, the dominant SOF bit marks the start of a message on the node.

Arbitration: It indicates the frame priority and contains message identifier and frame type

(data/remote frame).

Control: It indicates the number of bytes, identifier format (standard/extended) and the reserved bit.

Data: Up to 8 bytes of data can be sent in one message (data length is determined by the DLC in

the control field).

CRC (cyclic redundancy check): The transmitter calculates a check sum from the transmitted bits

(stuff bit not included) and provides the result within the frame in the CRC field. The receivers use

the same polynomial to calculate the check sum from the bits as seen on the bus-lines. The self-

calculated check sum is compared with the received on. In case of a mismatch, the receiving node

sends an error frame. If it matches, the frame is regarded as correctly received and then sent to the

ACK field.

ACK (acknowledge): It contains the ACK SLOT and ACK DELIMITER. The transmitting node is

always recessive in the ACK field. If no error is detected on the receiving node during receiving

process, the ACK bit outputs 1-bit dominant level to notify the transmitting node that this frame is

correctly received.

EOF (End of frame): It indicates the end of a data frame, and it is recessive of 7-bit.

Figure 4 CAN standard data frame

Start of

frame
identifier

Remote trans

request

Identifier

extension bit

Reserved

bit

Data

length

code

Data

CRC

delimiter
ACK

bit

ACK

delimiter
End of frame

CRC calculation

CAN bit stuffing

Inter-frame space Data frame (standard identifier)

44 + 8* N

Arbitration field

12

ID

6

Control field Data field

8* N

CRC field

16

CRC

Ack field

2

7

EOF
DLCS

O
F

R
T

R

ID
E r0

A
C

K

Inter-frame space or

overload frame

2.5 Bit stuffing

Since the CAN bus contains CANH/CANL lines only, without a CLK line for synchronization, it

implements synchronization directly through the signal in data stream (refer to 2.7 Synchronization

Mechanism). In addition, the bit stuffing mechanism is introduced to deal with the possible condition

of no edge in data stream.

Every time 5 consecutive bits at the same level are found in the bit sequence sent on the bus, the

CAN controller in the transmitting device(s) automatically inserts a stuff bit at the opposite value. For

AT32 MCU CAN Quick Start Guide

2022.7.19 11 Ver 2.0.1

example, the original data stream is “0000000111110001…” and the data stream sent to CAN bus

after bit stuffing is “000001001111100001…”, in which the underlined bits are stuff bits.

Bit stuffing is added from the SOF to CRC field (CRC delimiter not included), as shown in Figure 4.

2.6 Bit format

One bit of AT32 CAN can be divided into the following 3 segments:

 Synchronization segment (SYNC_SEG)

 Bit segment 1, including PROP_SEG and PHASE_SEG1 in CAN standard, marked as

BSEG1.

 Bit segment 2, i.e., PHASE_SEG2 in CAN standard, marked as BSEG2.

These segments consists of the smallest time unit (Time Quantum, Tq).

One bit is divided into three segments, and each segment consists of several Tq, which is called bit

timing.

The number of Tq per bit / bit segment and bit timing can be set as required. Users can set the bit

timing and Tq length to set CAN baud rate and sample point.

Table 2 lists each segment and configurable Tq of AT32 CAN.

Table 2 Description of bit segments

Segment (CAN

standard)

Segment (AT32

CAN)

Description Tq

Synchronization

segment

(SYNC_SEG)

Synchronization

segment

(SYNC_SEG)

It is used to synchronize all nodes

connected to the CAN bus, and a signal

edge is expected within this segment.

1Tq

Propagation

segment

(PROP SEG)

Bit segment 1

(BSEG1)

It is used to compensate for the physical

delay times within the network, and its

length is twice these delay times to

compensate for input comparator and

output driver.

1~16T

q

Phase segment 1

(PHASE SEG1)

It is used to compensate for phase error

in the edge phase, and it may be

lengthened or shortened through

resynchronization jump.
Phase segment 2

(PHASE SEG2)

Bit segment 2

(BSEG2)

1~8Tq

As shown in Figure 5, one bit consists of a synchronization segment, bit segment 1 and bit segment

2. The sample point, i.e., the sampling point of receiving node, is at the junction of BSEG1 and

BSEG2.

AT32 MCU CAN Quick Start Guide

2022.7.19 12 Ver 2.0.1

Figure 5 Normal bit timing

SYNC_SEG BSEG1 BSEG2

Nomal Bit Timing

Sample Translate

tBSEG1 tBSEG2tSYNC_SEG

2.7 Synchronization mechanism

Hard synchronization

After a hard synchronization, the bit time is restarted with the end of synchronization segment. Thus

hard synchronization forces the edge which has caused the hard synchronization to lie within the

synchronization segment of the restarted bit time, as shown in Figure 6.

Resynchronization jump width

Resynchronization leads to lengthening of bit segment 1 or shortening of bit segment 2. The

maximum bit lengthening and shortening are given by the resynchronization jump width (which

should be set to 1~4 Tq).

As shown in Figure 6,

When a falling edge is detected on BSEG1, the BSEG1 lengthens for Tdelay and the current bit

lengthens for Tdelay, in which the Tdelay<= resynchronization jump width.

When a falling edge is detected on BSEG2, the BSEG2 shortens for Tadvance and the current bit

shortens for Tadvance, in which the Tadvance<= resynchronization jump width.

AT32 MCU CAN Quick Start Guide

2022.7.19 13 Ver 2.0.1

Figure 6 Resynchronization jump

SYNC_SEG BSEG1 BSEG2

1bit

Transmitting

node

Sample point

Ideal falling edge

Transmitting

node

Sample point

Falling edge on BSEG1

SYNC_SEG BSEG1 BSEG2
Transmitting

node

Sample

point

Falling edge on BSEG2

Tadvance

SYNC_SEG BSEG1 BSEG2

1bit

tdelay

1bit
Start of the next bit

tdelay

2.8 Arbitration mechanism

Whenever the bus is free, any node may start to transmit the message. If two or mode nodes start

transmitting messages at the same time, the bus access conflict occurs, which can be resolved by

the bitwise arbitration using the identifier. The mechanism of the arbitration guarantees that neither

information nor time is lost. If a data frame and a remote frame with the same identifier are initiated

at the same time, the data frame prevails over to the remote frame. During the arbitration, every

transmitter compares the level of the bit transmitted with the level that is monitored on the bus. If

these levels are equal, the node may continue to the send. When a recessive level is sent, but a

dominant level is monitored, the node has lost arbitration and must withdraw without sending any

further bits.

As shown in Figure 7, note 1 and node 2 transmit a message at the same time with the same

identifier; from the red mark, node 1 starts transmitting recessive level “1” and node 2 starts

transmitting dominant level “0”. At this time, node 2 wins the arbitration and keeps transmission, and

the bus level is the same as that of node 2; while node 1 loses the arbitration and switches to a

receiving mode in the next bit, with the subsequent transmitting pins remains at a recessive level.

AT32 MCU CAN Quick Start Guide

2022.7.19 14 Ver 2.0.1

Figure 7 Arbitration mechanism

Node 1

Node 2

Bus level

Arbitration lost

2.9 CAN error handling mechanism

2.9.1 Error type

There are five types of error in CAN protocol.

 Bit error

CAN nodes transmitting a message to the bus also monitor the bus and compare the

transmitted level bit by bit with the corresponding level on the bus. A bit error is detected when

the transmitted bit level differs from the monitored bus level. AT32 CAN bit error is classified

into dominant bit error (transmitted bit is dominant while recessive bit is monitored) and

recessive bit error (transmitted bit is recessive while dominant bit is monitored). A bit error may

occur when CAN nodes are in a transmitting mode.

However, there are exceptions that a dominant bit on the bus will not lead to a bit error when a

recessive bit is transmitted during arbitration or during the ACK slot, and a node sending a

passive error frame and detecting a dominant bit will not interpret this as a bit error.

 Stuff error

A stuff error occurs whenever 6 consecutive bits of equal value are detected on the bus (in the

bit stuffing region shown in Figure 4). A stuff error may occur when CAN nodes are in a

receiving mode.

 CRC error

CRC sequence contains the CRC checksum calculated by the transmitter (the receiver uses

the same polynomial to calculate the checksum). If the calculated CRC is different from the

received CRC, then the receiver signals it as CRC error. A CRC error may occur when CAN

nodes are in a receiving mode.

 Form error

A form error is detected when a fixed format field contains one or more dominant bits. For

example, if a dominant bit is detected in the CRC delimiter /ACK delimiter, it is a form error.

There is an exception that the dominant bit during the last bit at the end of frame of the

receivers is not considered as a frame error. A form error may occur when the CAN node is in

a receiving mode.

 Acknowledgment error

As long as the monitored during the ACK SLOT bit is not "dominant", then the transmitter will

detect an error response (acknowledgment error). An acknowledgment error may occur when

AT32 MCU CAN Quick Start Guide

2022.7.19 15 Ver 2.0.1

CAN node is in a transmitting mode.

2.9.2 Error state

When an error is detected on the CAN node, the transmit error counter (TEC[7:0]) /receive error

counter (REC[7:0]) is increased by 1 or 8 (refer to BOSCH CAN protocol for details) according to

the specific error state and type. After each time of correct transmission/receiving of a message, the

TEC/REC is decreased by 1. Therefore, the TEC/REC value indicates the stability of CAN node and

network. Depending on the TEC/REC value, a node can be in one of three states:

 Error active

In this state, node can participate in all CAN activity and raise “Active Error Flag” (6 dominant

bits) when detecting errors. As shown in Figure 8, when TEC<128 and REC<128, a CAN node

enters into error active state.

 Error passive

In this state, node can participate in data/remote frame receiving and transmitting, and raise

“Passive Error Flag” (6 recessive bits) when detecting errors. As shown in Figure 8, when

255≥TEC>128 and 255≥REC>128, a CAN node enters into error passive state.

 Bus-off

In this state, node is switched off from the CAN bus and neither sends nor receives frames. As

shown in Figure 8, when TEC>255, a CAN node enters into bus-off state.

AT32 CAN node bus-off management: AT32 CAN node recovers from bus-off state in the

following conditions:

1) When the AEBOEN bit of CAN_MCTRL register is set to 0, the software requests to enter

and then exit freeze mode, and then the CAN node waits for 128 occurrences of 11

consecutive recessive bits (detected on RX) in communication mode.

2) When AEBOEN bit is set to 1, the CAN node waits for 128 occurrences of 11 consecutive

recessive bits (detected on RX) in communication mode.

Figure 8 CAN node error states

Error Active Error Passive

Bus off

TEC or REC＞127

TEC and REC＜128

TEC＞255

128 occurrences of

11 consecutive

recessive bits

AT32 MCU CAN Quick Start Guide

2022.7.19 16 Ver 2.0.1

3 AT32 CAN

AT32 CAN is compliant with the CAN 2.0 specification (2.0A and 2.0B), with some functions and

configurable options added based on the compatible standard CAN protocol. The main differences

between CAN 2.0A and 2.0B are as follows: CAN 2.0A only supports 11-bit IDs (i.e., standard

frames) while CAN 2.0B supports 11-bit/29-bit IDs (i.e., standard and extended frames).

This section mainly introduces the AT32 CAN structure and application method, AT32 CAN

communication process including transmission, receiving, message filtering, baud rate and sample

point settings. Refer to Reference Manual for details about error management and interrupt

management, etc.

3.1 Function overview

As the number of nodes in the CAN network and the number of messages grows, an enhanced

filtering mechanism is required to handle all types of messages in order to reduce the processing

time of message reception. One FIFO scheme is used to ensure that the CPU can concentrate on

application tasks for a long period of time without the loss of messages. In the meantime, the priority

order of the messages to be transmitted is configured by hardware. Based on the above mentioned

conditions, AT32 CAN controller provides 28 identifier filter banks (configurable bit width), two

receive FIFOs (storing 3 complete messages each) and three transmit mailboxes with their transmit

priority order defined by the transmit scheduler. The message transmitting and receiving process is

totally managed by hardware, without occupying CPU.

Figure 9 AT32 CAN function overview

Receive

FIFO [1:0]

Mail

box

0

Mail

box

1

Mail

box

2

28 filter banks
Bit timing control

RX/TX
Send arbitrationEmail [2:0]

Receive

FIFO [1:0]

Mail

box

0

Mail

box

1

Mail

box

2

28 filter banks
RX/TX

Bit timing control
Send arbitrationEmail [2:0]

CAN

CAN 1

CAN 2

3.2 Message transmission

The message transmission process is shown in Figure 10, including the following steps.

Steps 1~3 are performed by the user, and steps 4~7 are completed by hardware automatically.

1) Program selects one empty mailbox (send mailbox empty flag by setting TMxEF=1);

2) Write the message to be sent into the corresponding empty mailbox, and the message content

includes ID, frame type, data length and transmit data;

3) Request to send: Set TMSR=1 in the CAN_TMIx register;

4) Mailbox pending (wait until the priority is given);

5) Schedule transmission (wait until the CAN bus becomes free);

AT32 MCU CAN Quick Start Guide

2022.7.19 17 Ver 2.0.1

6) Transmit;

7) Mailbox becomes empty.

Note: Steps 1~7 are brief transmission procedures, and Figure 10 also demonstrates transmission

cancelled, transmission failed, and automatic retransmission enabled / disenabled. Refer to

message transmission in the Reference Manual for details.

Figure 10 shows the following flag bits and operation bits:

TMxTCF bit: Transmission complete flag (request to send/abort)

TMxTSF bit: Transmission success flag

TMxEF bit: Transmit mailbox empty flag

TMSR bit: Request to send

TMxCT bit: Abort sending

PRSFEN: Disable automatic retransmission (automatic retransmission disabled when PRSFEN =1;

automatic retransmission enabled when PRSFEN=0)

Figure 10 Message transmission process

Idle
TMxTCF=X
TMxTSF=X
TMxEF=1

Idle
TMxTCF=1
TMxTSF=0
TMxEF=1

Idle
TMxTCF=1
TMxTSF=1
TMxEF=1

Scheduled
TMxTCF=0
TMxTSF=0
TMxEF=0

Pending
TMxTCF=0
TMxTSF=0
TMxEF=0

Transmit
TMxTCF=0
TMxTSF=0
TMxEF=0

TMSR=1

TMxCT=1

Transmission
failed* PRSFEN

Transmission
success

CAN bus =
IDLE

Transmission
failed*PRSFEN

Highest
priority

Mailbox priority
not given

TMxCT=1

3.3 Message reception

The message reception process is shown in Figure 11 (empty and pending_1), including the

following steps.

1) FIFO empty;

2) Valid message received;

3) Enter into “pending_1” state (there is one valid message in FIFO);

4) Read valid message: Read CAN_RFIx, CAN_RFCx, CAN_RFDTLx and CAN_RFDTHx

AT32 MCU CAN Quick Start Guide

2022.7.19 18 Ver 2.0.1

registers;

5) Release mailbox: Set RFxR=1 in the CAN_RFx register.

Note: Steps 4~3 are performed by the user, and steps 1~3 are completed by hardware

automatically.

Valid message:

When a message is received correctly (no error occurs in the whole EOF field) and has passed

identifier filtering, it is regarded as a valid message.

If the user does not participate in the message receiving process (i.e., neither read the valid

message nor release mailbox), the hardware completes the following process:

1) Valid message received;

2) Enter into “pending_1” state (there is one valid message in FIFO);

3) Valid message received;

4) Enter into “pending_2” state (there are two valid messages in FIFO);

5) Valid message received;

6) Enter into “pending_3” state (there are three valid messages in FIFO);

7) Valid message received;

8) Enter into “overflow” state (there are three valid messages in FIFO and one message is lost,

and the overflow flag is set).

Figure 11 shows the following flag bits and operation bits:

RFxMN bit: Number of valid messages in FIFO (range: 0~3)

RFxOF bit: Overflow flag

RFxR bit: Release mailbox

AT32 MCU CAN Quick Start Guide

2022.7.19 19 Ver 2.0.1

Figure 11 Message reception process

Empty
RFxMN=0×00

RFxOF=0

Pending＿1
RFxMN=0×01

RFxOF=0

Pending＿3
RFxMN=0×11

RFxOF=0

Pending＿2
RFxMN=0×10

RFxOF=0

Overflow
RFxMN=0×11

RFxOF=1

Valid

message

received

Valid message

received

Valid message

received

Release
mailbox
RFxR=1

Valid message

received

Valid message

received

Release
mailbox
RFxR=1

Release
mailbox
RFxR=1

Release
mailbox
RFxR=1

3.4 Filter

In CAN protocol, the message ID does not represent the node address but is related to the

message content. Therefore, the transmitter broadcasts the message to all receiver, and the node

determines whether or not this message is required by software according to the ID value. If

required, this message is stored in the receive FIFO, which can be obtained by users by reading the

receive mailbox register; if not required, this message is discarded, without intervention by software.

To meet these requirements, AT32 CAN controller provides 28 identifier filter banks (28 filter banks

(0~27) for the AT32F435 series, and 14 filter banks (0~13) for the AT32F403A series; refer to the

reference manual of the corresponding series) to receive messages required by software. The

filtering process does not require software operation after the required ID is configured by the user.

Filter bit width

Each filter bank has two 32-bit registers (CAN_FiFB1 and CAN_FiFB2). The filter bit width can be

configured as two 16 bits or one 32 bits, depending on the FBWSELx bit in the CAN_FBWCFG

AT32 MCU CAN Quick Start Guide

2022.7.19 20 Ver 2.0.1

register.

One 32-bit filter register CAN_FiFBx includes the SID[10:0], EID[17:0], IDT and RTR bits.

Two 16-bit filter register CAN_FiFBx includes the SID[10:0], IDT, RTR and EID[17:15] bits.

Filtering mode

The filter can be configured in identifier mask mode or in identifier list mode by setting the FMSELx

bit in the CAN_FMCFG register. The mask mode is used to specify which bits must match the pre-

programmed identifiers, and which bits do not need. In identifier list mode, the identifier must match

the pre-programmed identifier.

The two modes can be used in conjunction with filter width to deliver four filtering modes below:

Figure 12 32-bit identifier mask mode

CAN_FiFB1[31:21] CAN_FiFB1[20:3]

CAN_FiFB2[31:21] CAN_FiFB2[20:3]

CAN_FiFB1

[2:0]

CAN_FiFB2

[2:0]

SID[10:0] EID[17:0] IDT RTR 0

ID

Mask

Mapping

Figure 13 32-bit identifier list mode

CAN_FiFB1[20:3]
CAN_FiFB1

[2:0]

CAN_FiFB2[20:3]
CAN_FiFB2

[2:0]

IDT RTR 0

CAN_FiFB1[31:21]

CAN_FiFB2[31:21]

SID[10:0] EID[17:0]

ID

ID

Mapping

Figure 14 16-bit identifier mask mode

CAN_FiFB1[15:5] CAN_FiFB1[4:0]

CAN_FiFB1[31:21] CAN_FiFB1[20:16]

CAN_FiFB2[15:5] CAN_FiFB2[4:0]

CAN_FiFB2[31:21] CAN_FiFB2[20:16]

SID[10:0] RTR EID[17:15]IDT

ID

Mask

ID

Mask

Mapping

Figure 15 16-bit identifier list mode

CAN_FiFB1[15:8] CAN_FiFB1[7:0]

CAN_FiFB1[31:24] CAN_FiFB1[23:16]

CAN_FiFB2[15:8] CAN_FiFB2[7:0]

CAN_FiFB2[31:24] CAN_FiFB2[23:16]

SID[10:0] RTR EID[17:15]IDT

ID

ID

ID

ID

Mapping

For details about filter match number and priority rules, refer to the reference manual of the

corresponding series. The filter configuration process is detailed in the example of CAN acceptance

filter application.

AT32 MCU CAN Quick Start Guide

2022.7.19 21 Ver 2.0.1

3.5 CAN baud rate and sample point

The nominal bit time of the CAN bus consists of three parts as follows:

Synchronization segment (SYNC_SEG): This segment has one time unit (Tq) and its time duration

is defined by the BRDIV[11:0] bit in the CAN_BTMG register.

Bit segment 1 (BSEG1): Its duration is between 1~16Tq, defined by the BTS1[3:0] bit in the

CAN_BTMG register.

Bit segment 2 (BSEG2): Its duration is between 1~8Tq, defined by the BTS2[2:0] bit in the

CAN_BTMG register.

Users can configure the CAN baud rate and sample point by setting the CAN timing register. Since

the frequency of each node may be different, the baud rates and sampling points of all nodes on

CAN bus are different (ideally consistent). In actual applications, users should first ensure that the

baud rate is consistent and minimize the deviation of sample points, so that CAN bus can support

mode nodes and longer line.

3.5.1 Baud rate formula

 𝐵𝑎𝑢𝑑𝑅𝑎𝑡𝑒 =
1

Nomal Bit Timimg

 𝑁𝑜𝑚𝑎𝑙 𝐵𝑖𝑡 𝑇𝑖𝑚𝑖𝑛𝑔 = t𝑆𝑌𝑁𝐶_𝑆𝐸𝐺 + t𝐵𝑆𝐸𝐺1 + t𝐵𝑆𝐸𝐺2

Where,

 t𝑆𝑌𝑁𝐶_𝑆𝐸𝐺 = 1 x t𝑞

 t𝐵𝑆𝐸𝐺1 = (1 + BTS1[3: 0]) x t𝑞

 t𝐵𝑆𝐸𝐺2 = (1 + BTS2[2: 0]) x t𝑞

 t𝑞 = (1 + BRDIV[11: 0]) x t𝑝𝑐𝑙𝑘

For example, the BSP routine project\at_start_f437\examples\can\communication_mode:

APB clock: APB1_CLK = 144MHZ

CAN division: BRDIV = 12

At this time, 1Tq =
1

144MHZ/12
=

1

12
𝑢𝑠

Synchronization segment: SYNC_SEG = 1Tq (fixed)

Bit segment 1: BSEG1 = 8Tq (BTS1[3:0] = 7)

Bit segment 2: BSEG2 = 3Tq (BTS2[2:0] = 2)

Therefore, 𝑁𝑜𝑚𝑎𝑙 𝐵𝑖𝑡 𝑇𝑖𝑚𝑖𝑚𝑔 = 1Tq ∗ (SYNCSEG + BSEG1 + BSEG12) = 1𝑢𝑠

𝐵𝑎𝑢𝑑𝑅𝑎𝑡𝑒 =
1

Nomal Bit Timimg
=

1

1us
= 1𝑀bps

3.5.2 Sample point formula

𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑜𝑖𝑛𝑡 =
SYNC_SEG + BSEG1

SYNC_SEG + BSEG1 + BSEG2

Take the same example as above:

At this time, 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑜𝑖𝑛𝑡 =
1+8

1+8+3
= 75%

The CAN protocol does not specifies sample points, and the suggested sample point settings are

given in Table 3 below:

Table 3 Sample point settings

Baud rate Sample point

AT32 MCU CAN Quick Start Guide

2022.7.19 22 Ver 2.0.1

>800Kbps 75%

>500Kbps 80%

<=500Kbps 87.5%

3.5.3 Baud rate configuration tool

For the convenience of baud rate configuration, this application note introduces the CAN BitRate

Configuration specially developed by Artery.

Operation steps:

1) Baud rate setting: High-speed CAN offers baud rates of up to 1 M, and the frequently used

baud rates are 125K, 250K, 333K, 500K and 1M. Users can set the baud rate as needed in the

“Bit rate (Kbit/)” in Figure 16.

2) CAN clock source frequency setting: Refer to “PCLK1(MHZ)” in Figure 16.

3) Sample point setting: After the baud rate is set, a recommended sample point is filled in

automatically. The sample point is kept as default if there is no specific requirement, or it can be

adjusted as required. Refer to the “sample point (%)” in Figure 16.

4) Baud rate deviation: Tick the “allow bit rate deviation” only if there is no satisfactory

calculation result. Since the baud rate error of nodes in the same CAN network will increase the

probability of communication error, it is recommended to set the "tolerance" as small as

possible. Refer to the “allow bit rate deviation” and “tolerance” in Figure 16.

5) Baud rate configuration selection: Multiple groups of results are obtained based on the

above settings. Select one group of results, and the corresponding software code configuration

is displayed on the right. Click on “copy all” to copy the corresponding codes.

Figure 16 CAN BitRate configuration tool

AT32 MCU CAN Quick Start Guide

2022.7.19 23 Ver 2.0.1

4 Application case 1: CAN communication in normal
mode

Note: All projects are built around keil 5. If users want to use them in other compiling environments,

please refer to AT32xxx_Firmware_Library_V2.x.x\project\at_start_xxx\templates (such as IAR6/7, keil

4/5) for a simple change.

4.1 Function

Realize communication between two CAN nodes.

4.2 Resources

1) Hardware

Two sets of AT-START BOARDs of the corresponding series + CAN level converters

Take the bsp demo as an example:

CAN1_TX(PB9) is connected to level converter TXD;

CAN1_RX(PB8) is connected to level converter RXD;

CANH and CANL are connected to the level converters respectively.

The hardware design of CAN level converter is shown below.

Figure 17 CAN level converter schematics diagram

2) Software

project\at_start_f435\examples\can\communication_mode

4.3 Software design

1) Configuration process

 Configure GPIO pins corresponding to CAN1 TX and RX pins

 Configure CAN basic settings

 Configure CAN baud rate

 Configure CAN filter

 Configure CAN interrupt

2) Code

 Main function

AT32 MCU CAN Quick Start Guide

2022.7.19 24 Ver 2.0.1

int main(void)

{

 system_clock_config(); /* Configure system clock */

 at32_board_init();/*AT-START BOARD basic settings, such as LED initialization, delay initialization,

etc. */

 nvic_priority_group_config(NVIC_PRIORITY_GROUP_4); /*Configure interrupt group priority */

 can_gpio_config();/*Configure the GPIO corresponding to CAN1 */

 can_configuration(); /* Configure CAN, including CAN basic settings, baud rate, filter and interrupt */

 while(1)

 {

 can_transmit_data(); /* CAN1 transmits a data frame */

 at32_led_toggle(LED4); /* Toggle LED4 */

 delay_sec(1); /* delay for 1 second */

 }

}

 CAN configuration function

static void can_configuration(void)

{

 can_base_type can_base_struct;

 can_baudrate_type can_baudrate_struct;

 can_filter_init_type can_filter_init_struct;

 /* Enable the can clock */

 crm_periph_clock_enable(CRM_CAN1_PERIPH_CLOCK, TRUE); /* Enable CAN clock */

 /* CAN basic settings */

 can_default_para_init(&can_base_struct); /* Initialize CAN base configuration structure */

 can_base_struct.mode_selection = CAN_MODE_COMMUNICATE; /* CAN communication mode:

normal mode */

 can_base_struct.ttc_enable = FALSE; /* CAN time triggered communication mode (timestamp):

Disabled */

 can_base_struct.aebo_enable = TRUE; /* Automatic exit bus-off mode: Enabled */

 can_base_struct.aed_enable = TRUE; /* Automatic exit doze mode: Enabled */

 can_base_struct.prsf_enable = FALSE; /* Prohibit auto retransmission: Disabled (that is, auto

retransmission enabled, as specified in CAN protocol) */

 can_base_struct.mdrsel_selection = CAN_DISCARDING_FIRST_RECEIVED; /* Message

discarding rule when overflow: the previous message is discarded, and save the new incoming

massage */

 can_base_struct.mmssr_selection = CAN_SENDING_BY_ID; /* Multiple message transmission

priority: message with the smallest identifier is first transmitted */

 can_base_init(CAN1, &can_base_struct); /* Write the above base configurations into CAN master

control register */

 /* CAN baud rate configuration

can baudrate, set boudrate = pclk/(baudrate_div *(1 + bts1_size + bts2_size))

AT32 MCU CAN Quick Start Guide

2022.7.19 25 Ver 2.0.1

 pclk=144M;

 boudrate = 144/(12*(1+8+3))=1Mbps

 */

 can_baudrate_struct.baudrate_div = 12; /* CAN division: 12 */

 can_baudrate_struct.rsaw_size = CAN_RSAW_1TQ; /* CAN sync jump width: 1Tq */

 can_baudrate_struct.bts1_size = CAN_BTS1_8TQ; /* CAN bit segment 1: 8Tq */

 can_baudrate_struct.bts2_size = CAN_BTS2_3TQ; /* CAN bit segment 2: 3Tq */

 can_baudrate_set(CAN1, &can_baudrate_struct); /* Write the above base configurations into CAN

bit timing register */

 /* CAN filter configuration */

can_filter_init_struct.filter_activate_enable = TRUE; /* Enable filter */

 can_filter_init_struct.filter_mode = CAN_FILTER_MODE_ID_MASK; /* Filter mode: identifier mask */

 can_filter_init_struct.filter_fifo = CAN_FILTER_FIFO0; /* Filter relation FIFO (FIFO1/FIFO1) select:

FIFO0 */

 can_filter_init_struct.filter_number = 0; /* Filter bank select (0~27): 0 */

 can_filter_init_struct.filter_bit = CAN_FILTER_32BIT; /* Filter bit width: 32 bits */

 can_filter_init_struct.filter_id_high = 0; /* Filter ID high: 0 */

 can_filter_init_struct.filter_id_low = 0; /* Filter ID low: 0 */

 can_filter_init_struct.filter_mask_high = 0; /* Filter identifier mask high: 0 (all IDs can pass)*/

 can_filter_init_struct.filter_mask_low = 0; /* Filter identifier mask low: 0 (all IDs can pass) */

 can_filter_init(CAN1, &can_filter_init_struct); /* Write the above base configurations into relevant

CAN filter registers */

 /* CAN interrupt configuration */

 nvic_irq_enable(CAN1_SE_IRQn, 0x00, 0x00); /* Interrupt priority setting and enable: CAN1 status

change/error interrupt */

 nvic_irq_enable(CAN1_RX0_IRQn, 0x00, 0x00); /* Interrupt priority setting and enable: CAN1

FIFO0 receive interrupt */

 can_interrupt_enable(CAN1, CAN_RF0MIEN_INT, TRUE); /* CAN1 FIFO0 non-empty interrupt

enable: An interrupt is generated when FIFO0 receives a frame of valid data */

 can_interrupt_enable(CAN1, CAN_ETRIEN_INT, TRUE); /* Error type record interrupt enable: An

interrupt is generated when ETR[2:0] is not equal to 0 */

 can_interrupt_enable(CAN1, CAN_EOIEN_INT, TRUE); /* CAN1 error interrupt enable: Master

switch for all error interrupts */

}

 CAN transmit function

static void can_transmit_data(void)

{

 uint8_t transmit_mailbox;

 can_tx_message_type tx_message_struct;

 tx_message_struct.standard_id = 0x400; /* Set the to-be-transmitted data ID=0x400 */

 tx_message_struct.extended_id = 0;

 tx_message_struct.id_type = CAN_ID_STANDARD; /* To-be-transmitted data type

(standard/extended): standard data frame */

 tx_message_struct.frame_type = CAN_TFT_DATA; /* To-be-transmitted frame type (remote/data):

AT32 MCU CAN Quick Start Guide

2022.7.19 26 Ver 2.0.1

Data frame */

 tx_message_struct.dlc = 8; /* To-be-transmitted data length (0~8): 8 */

 tx_message_struct.data[0] = 0x11; /* 1st byte: 0x11 */

 tx_message_struct.data[1] = 0x22; /* 2nd byte: 0x22 */

 tx_message_struct.data[2] = 0x33; /* 3rd byte: 0x33 */

 tx_message_struct.data[3] = 0x44; /* 4th byte: 0x44 */

 tx_message_struct.data[4] = 0x55; /* 5th byte: 0x55 */

 tx_message_struct.data[5] = 0x66; /* 6th byte: 0x66 */

 tx_message_struct.data[6] = 0x77; /* 7th byte: 0x77 */

 tx_message_struct.data[7] = 0x88; /* 8th byte: 0x88 */

 transmit_mailbox = can_message_transmit(CAN1, &tx_message_struct); /* Write the above to-be-

transmitted message into the transmit mailbox and request to send */

 while(can_transmit_status_get(CAN1, (can_tx_mailbox_num_type)transmit_mailbox) !=

CAN_TX_STATUS_SUCCESSFUL); /* Wait for transmit mailbox transmission success (the

transmission success flag of the corresponding transmit mailbox is set) */

}

 CAN receive interrupt handler

void CAN1_RX0_IRQHandler(void)

{

 can_rx_message_type rx_message_struct;

 if(can_flag_get(CAN1,CAN_RF0MN_FLAG) != RESET) /* FIFO0 non-empty judgment (number of

message >0) */

 {

 can_message_receive(CAN1, CAN_RX_FIFO0, &rx_message_struct); /* Read a message,

including the ID, data length and data, etc. */

 if(rx_message_struct.standard_id == 0x400) /* Check whether the received message is in

standard frame format whose ID=0x400 */

 at32_led_toggle(LED2); /* If the received message is in standard frame format with ID=0x400,

toggle LED2 */

 else

 at32_led_toggle(LED3); /* If not, toggle LED3 */

 }

}

 GPIO configuration function

static void can_gpio_config(void)

{

 gpio_init_type gpio_init_struct;

 /* enable the gpio clock */

 crm_periph_clock_enable(CRM_GPIOB_PERIPH_CLOCK, TRUE); /* Enable the corresponding

GPIOB clock */

 gpio_default_para_init(&gpio_init_struct); /* Initialize GPIO configuration structure */

 /* configure the can tx, rx pin */

AT32 MCU CAN Quick Start Guide

2022.7.19 27 Ver 2.0.1

 gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER; /* GPIO drive

strength: strong */

 gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL; /* FPIO output mode: push-pull

output */

 gpio_init_struct.gpio_mode = GPIO_MODE_MUX; /* GPIO mode: multiplexed*/

 gpio_init_struct.gpio_pins = GPIO_PINS_9 | GPIO_PINS_8; /* GPIO pins: pin8 & pin9 */

 gpio_init_struct.gpio_pull = GPIO_PULL_NONE; /* GPIO pull configuration: no pull-up, no pull-down

*/

 gpio_init(GPIOB, &gpio_init_struct); /* Write the above configuration into the corresponding register

*/

 gpio_pin_mux_config(GPIOB, GPIO_PINS_SOURCE9, GPIO_MUX_9); /* Configure GPIOB_pin9

mux9 (CAN_TX) */

 gpio_pin_mux_config(GPIOB, GPIO_PINS_SOURCE8, GPIO_MUX_9); /* Configure GPIOB_pin8

mux9 (CAN_RX) */

4.4 Test result

 If the data transmission is correct, the LED2 lights on both AT-START BOARDs blink,

indicating a message in standard data format with ID=0x400 is received, and LED4 keeps

blinking, indicating the program is working properly.

AT32 MCU CAN Quick Start Guide

2022.7.19 28 Ver 2.0.1

5 Application case 2: CAN receive filter

Note: All projects are built around keil 5. If users want to use them in other compiling environments,

please refer to AT32xxx_Firmware_Library_V2.x.x\project\at_start_xxx\templates (such as IAR6/7, keil

4/5) for a simple change.

5.1 Function

Realize message filtering; receive the required message and discard the undesired.

5.2 Resources

1) Hardware

Two sets of AT-START BOARDs of the corresponding series + CAN level converters

Take the bsp demo as an example:

CAN1_TX(PB9) is connected to level converter TXD;

CAN1_RX(PB8) is connected to level converter RXD;

CANH and CANL are connected to the level converters respectively.

The hardware design of CAN level converter is shown below.

Figure 18 CAN level converter schematics diagram

2) Software

project\at_start_f435\examples\can\ filter

5.3 Software design

1) Configuration process

 Configure pins corresponding to CAN1 TX and RX pins

 Configure CAN basic settings

 Configure CAN baud rate

 Configure CAN filter

 Configure CAN interrupt

2) Code

 Set IDs that can pass filtering

AT32 MCU CAN Quick Start Guide

2022.7.19 29 Ver 2.0.1

/* extended identifier */

#define FILTER_EXT_ID1 ((uint32_t)0x18F5F100)

#define FILTER_EXT_ID2 ((uint32_t)0x18F5F200)

/* standard identifier */

#define FILTER_STD_ID1 ((uint16_t)0x04F6)

#define FILTER_STD_ID2 ((uint16_t)0x04F7)

 Main function

int main(void)

{

 system_clock_config(); /* Configure system clock */

 at32_board_init(); /* Configure AT-START BOARD basic settings, such as LED initialization, delay

initialization, etc. */

 nvic_priority_group_config(NVIC_PRIORITY_GROUP_4); /* Configure interrupt group priority */

 can_gpio_config(); /* Configure the GPIO corresponding to CAN1 */

 can_configuration(); /* Configure CAN, including CAN basic settings, baud rate, filter and interrupt */

can_transmit_data(); /* CAN1 transmits 4 frames of data (IDs: FILTER_EXT_ID1, FILTER_EXT_ID2,

FILTER_STD_ID1, FILTER_STD_ID2. */

 while(1)

 {

 if(test_result == 4)

 {

 at32_led_toggle(LED2); /* If 4 frames of data are received, toggle LED2/3/4 */

 at32_led_toggle(LED3);

 at32_led_toggle(LED4);

 delay_sec(1); /* delay for 1 second */

 }

 }

}

 CAN configuration function

static void can_configuration(void)

{

 can_base_type can_base_struct;

 can_baudrate_type can_baudrate_struct;

 can_filter_init_type can_filter_init_struct;

 /* enable the can clock */

 crm_periph_clock_enable(CRM_CAN1_PERIPH_CLOCK, TRUE); /* Enable CAN clock */

 /* CAN basic settings */

 can_default_para_init(&can_base_struct); /* Initialize CAN base configuration structure */

 can_base_struct.mode_selection = CAN_MODE_COMMUNICATE; /* CAN communication mode:

normal mode */

AT32 MCU CAN Quick Start Guide

2022.7.19 30 Ver 2.0.1

 can_base_struct.ttc_enable = FALSE; /* CAN time triggered communication mode (timestamp):

Disabled */

 can_base_struct.aebo_enable = TRUE; /* Automatic exit bus-off mode: Enabled */

 can_base_struct.aed_enable = TRUE; /* Automatic exit doze mode: Enabled */

 can_base_struct.prsf_enable = FALSE; /* Prohibit auto retransmission: Disabled (that is, auto

retransmission enabled, as specified in CAN protocol) */

 can_base_struct.mdrsel_selection = CAN_DISCARDING_FIRST_RECEIVED; /* Message

discarding rule when overflow: the previous message is discarded, and save the new incoming

massage */

 can_base_struct.mmssr_selection = CAN_SENDING_BY_ID; /* Multiple message transmission

priority: message with the smallest identifier is first transmitted */

 can_base_init(CAN1, &can_base_struct); /* Write the above configuration into CAN master control

register */

 /* CAN baud rate configuration:

can baudrate, set boudrate = pclk/(baudrate_div *(1 + bts1_size + bts2_size))

 pclk=144M;

 boudrate = 144/(12*(1+8+3))=1Mbps

 */

 can_baudrate_struct.baudrate_div = 12; /* CAN division: 12 */

 can_baudrate_struct.rsaw_size = CAN_RSAW_1TQ; /* CAN sync jump width: 1Tq */

 can_baudrate_struct.bts1_size = CAN_BTS1_8TQ; /* CAN bit segment 1: 8Tq */

 can_baudrate_struct.bts2_size = CAN_BTS2_3TQ; /* CAN bit segment 2: 3Tq */

 can_baudrate_set(CAN1, &can_baudrate_struct); /* Write the above base configurations into CAN

bit timing register */

 /* CAN filter configuration */

/* can filter 0 config */

 can_filter_init_struct.filter_activate_enable = TRUE; /* Enable filter */

 can_filter_init_struct.filter_mode = CAN_FILTER_MODE_ID_LIST; /* Filter mode: identifier list mode

*/

 can_filter_init_struct.filter_fifo = CAN_FILTER_FIFO0; /* Filter relation FIFO (FIFO1/FIFO1): select

FIFO0 */

 can_filter_init_struct.filter_number = 0; /* Filter bank select (0~27): 0 */

 can_filter_init_struct.filter_bit = CAN_FILTER_32BIT; /* Filter bit width: 32 bits */

 can_filter_init_struct.filter_id_high = (((FILTER_EXT_ID1 << 3) >> 16) & 0xFFFF); /* Configure the

extended ID that can pass filtering: FILTER_EXT_ID1 */

 can_filter_init_struct.filter_id_low = ((FILTER_EXT_ID1 << 3) & 0xFFFF) | 0x04;

 can_filter_init_struct.filter_mask_high = ((FILTER_EXT_ID2 << 3) >> 16) & 0xFFFF; /* Configure the

extended ID that can pass filtering: FILTER_EXT_ID2 */

 can_filter_init_struct.filter_mask_low = ((FILTER_EXT_ID2 << 3) & 0xFFFF) | 0x04;

 can_filter_init(CAN1, &can_filter_init_struct); /* Write the above configuration into relevant filter

register */

 /* can filter 1 config */

 can_filter_init_struct.filter_activate_enable = TRUE; /* Enable filter */

 can_filter_init_struct.filter_mode = CAN_FILTER_MODE_ID_LIST; /* Filter mode: identifier list mode

*/

AT32 MCU CAN Quick Start Guide

2022.7.19 31 Ver 2.0.1

 can_filter_init_struct.filter_fifo = CAN_FILTER_FIFO0; /* Filter relation FIFO (FIFO1/FIFO1) select

FIFO0 */

 can_filter_init_struct.filter_number = 1; /* Filter bank select (0~27):1 */

 can_filter_init_struct.filter_bit = CAN_FILTER_32BIT; /* Filter bit width: 32 bits */

 can_filter_init_struct.filter_id_high = FILTER_STD_ID1 << 5; /* Configure the standard ID that can

pass filtering: FILTER_STD_ID1 */

 can_filter_init_struct.filter_id_low = 0;

 can_filter_init_struct.filter_mask_high = FILTER_STD_ID2 << 5; /* Configure the standard ID that

can pass filtering: FILTER_STD_ID2 */

 can_filter_init_struct.filter_mask_low = 0;

 can_filter_init(CAN1, &can_filter_init_struct); /* Write the above configuration into relevant filter

register */

 /* CAN interrupt configuration */

 nvic_irq_enable(CAN1_SE_IRQn, 0x00, 0x00); /* Interrupt priority setting and enable: CAN1 status

change/error interrupt */

 nvic_irq_enable(CAN1_RX0_IRQn, 0x00, 0x00); /* Interrupt priority setting and enable: CAN1

FIFO0 receive interrupt */

 can_interrupt_enable(CAN1, CAN_RF0MIEN_INT, TRUE); /* CAN1 FIFO0 non-empty interrupt

enable: An interrupt is generated when FIFO0 receives a frame of valid data */

 can_interrupt_enable(CAN1, CAN_ETRIEN_INT, TRUE); /* Error type record interrupt enable: An

interrupt is generated when ETR[2:0] is not equal to 0 */

 can_interrupt_enable(CAN1, CAN_EOIEN_INT, TRUE); /* CAN1 error interrupt enable: Master

switch for all error interrupts */

}

 CAN transmit function

static void can_transmit_data(void)

{

 uint8_t transmit_mailbox;

 can_tx_message_type tx_message_struct;

 /* transmit FILTER_STD_ID1 */

 tx_message_struct.standard_id = FILTER_STD_ID1;/* Set the to-be-transmit data ID=

FILTER_STD_ID1 */

 tx_message_struct.extended_id = 0;

 tx_message_struct.id_type = CAN_ID_STANDARD; /* To-be-transmitted data type

(standard/extended): standard data frame */

 tx_message_struct.frame_type = CAN_TFT_DATA; /* To-be-transmitted frame type (remote/data):

data frame */

 tx_message_struct.dlc = 8; /* To-be-transmitted data length (0~8): 8 */

 tx_message_struct.data[0] = 0x11; /* 1st byte: 0x11 */

 tx_message_struct.data[1] = 0x22; /* 2nd byte: 0x22 */

 tx_message_struct.data[2] = 0x33; /* 3rd byte: 0x33 */

 tx_message_struct.data[3] = 0x44; /* 4th byte: 0x44 */

 tx_message_struct.data[4] = 0x55; /* 5th byte: 0x55 */

 tx_message_struct.data[5] = 0x66; /* 6th byte: 0x66 */

AT32 MCU CAN Quick Start Guide

2022.7.19 32 Ver 2.0.1

 tx_message_struct.data[6] = 0x77; /* 7th byte: 0x77 */

 tx_message_struct.data[7] = 0x88; /* 8th byte: 0x88 */

 transmit_mailbox = can_message_transmit(CAN1, &tx_message_struct); /* Write the above to-be-

transmitted message into the transmit mailbox and request to send */

 while(can_transmit_status_get(CAN1, (can_tx_mailbox_num_type)transmit_mailbox) !=

CAN_TX_STATUS_SUCCESSFUL); /* Wait for transmit mailbox transmission success (the

transmission success flag of the corresponding transmit mailbox is set) */

 /* transmit FILTER_STD_ID2 */

 tx_message_struct.standard_id = FILTER_STD_ID2;/* Set the to-be-transmit data ID=

FILTER_STD_ID2 */

 tx_message_struct.extended_id = 0;

 tx_message_struct.id_type = CAN_ID_STANDARD; /* To-be-transmitted data type

(standard/extended): standard data frame */

 tx_message_struct.frame_type = CAN_TFT_DATA; /* To-be-transmitted frame type (remote/data):

data frame */

 tx_message_struct.dlc = 8; /* To-be-transmitted data length (0~8): 8 */

 tx_message_struct.data[0] = 0x11; /* 1st byte: 0x11 */

 tx_message_struct.data[1] = 0x22; /* 2nd byte: 0x22 */

 tx_message_struct.data[2] = 0x33; /* 3rd byte: 0x33 */

 tx_message_struct.data[3] = 0x44; /* 4th byte: 0x44 */

 tx_message_struct.data[4] = 0x55; /* 5th byte: 0x55 */

 tx_message_struct.data[5] = 0x66; /* 6th byte: 0x66 */

 tx_message_struct.data[6] = 0x77; /* 7th byte: 0x77 */

 tx_message_struct.data[7] = 0x88; /* 8th byte: 0x88 */

 transmit_mailbox = can_message_transmit(CAN1, &tx_message_struct); /* Write the above to-be-

transmitted message into the transmit mailbox and request to send */

 while(can_transmit_status_get(CAN1, (can_tx_mailbox_num_type)transmit_mailbox) !=

CAN_TX_STATUS_SUCCESSFUL); /* Wait for transmit mailbox transmission success (the

transmission success flag of the corresponding transmit mailbox is set) */

 /* transmit FILTER_EXT_ID1 */

 tx_message_struct.standard_id = 0;

 tx_message_struct.extended_id = FILTER_EXT_ID1;/* Set the to-be-transmit extended data frame

ID= FILTER_EXT_ID1 */

 tx_message_struct.id_type = CAN_ID_EXTENDED; /* To-be-transmitted data type

(standard/extended): extended data frame */

 tx_message_struct.frame_type = CAN_TFT_DATA; /* To-be-transmitted frame type (remote/data):

data frame */

 tx_message_struct.dlc = 8; /* To-be-transmitted data length (0~8): 8 */

 tx_message_struct.data[0] = 0x11; /* 1st byte: 0x11 */

 tx_message_struct.data[1] = 0x22; /* 2nd byte: 0x22 */

 tx_message_struct.data[2] = 0x33; /* 3rd byte: 0x33 */

 tx_message_struct.data[3] = 0x44; /* 4th byte: 0x44 */

 tx_message_struct.data[4] = 0x55; /* 5th byte: 0x55 */

 tx_message_struct.data[5] = 0x66; /* 6th byte: 0x66 */

AT32 MCU CAN Quick Start Guide

2022.7.19 33 Ver 2.0.1

 tx_message_struct.data[6] = 0x77; /* 7th byte: 0x77 */

 tx_message_struct.data[7] = 0x88; /* 8th byte: 0x88 */

 transmit_mailbox = can_message_transmit(CAN1, &tx_message_struct); /* Write the above to-be-

transmitted message into the transmit mailbox and request to send */

 while(can_transmit_status_get(CAN1, (can_tx_mailbox_num_type)transmit_mailbox) !=

CAN_TX_STATUS_SUCCESSFUL); /* Wait for transmit mailbox transmission success (the

transmission success flag of the corresponding transmit mailbox is set) */

 /* transmit FILTER_EXT_ID2 */

 tx_message_struct.standard_id = 0;

 tx_message_struct.extended_id = FILTER_EXT_ID2;/* Set the to-be-transmit extended data frame

ID= FILTER_EXT_ID2 */

 tx_message_struct.id_type = CAN_ID_EXTENDED; /* To-be-transmitted data type

(standard/extended): extended data frame */

 tx_message_struct.frame_type = CAN_TFT_DATA; /* To-be-transmitted frame type (remote/data):

data frame */

 tx_message_struct.dlc = 8; /* To-be-transmitted data length (0~8): 8*/

 tx_message_struct.data[0] = 0x11; /* 1st byte: 0x11 */

 tx_message_struct.data[1] = 0x22; /* 2nd byte: 0x22 */

 tx_message_struct.data[2] = 0x33; /* 3rd byte: 0x33 */

 tx_message_struct.data[3] = 0x44; /* 4th byte: 0x44 */

 tx_message_struct.data[4] = 0x55; /* 5th byte: 0x55 */

 tx_message_struct.data[5] = 0x66; /* 6th byte: 0x66 */

 tx_message_struct.data[6] = 0x77; /* 7th byte: 0x77 */

 tx_message_struct.data[7] = 0x88; /* 8th byte: 0x88 */

 transmit_mailbox = can_message_transmit(CAN1, &tx_message_struct); /* Write the above to-be-

transmitted message into the transmit mailbox and request to send */

 while(can_transmit_status_get(CAN1, (can_tx_mailbox_num_type)transmit_mailbox) !=

CAN_TX_STATUS_SUCCESSFUL); /* Wait for transmit mailbox transmission success (the

transmission success flag of the corresponding transmit mailbox is set) */

}

 CAN receive interrupt handler

void CAN1_RX0_IRQHandler(void)

{

 can_rx_message_type rx_message_struct;

 if(can_flag_get(CAN1,CAN_RF0MN_FLAG) != RESET) /* non-empty judgment (number of

message >0) */

 {

 if(test_result == 4)

 {

 test_result = 0;

 }

 can_message_receive(CAN1, CAN_RX_FIFO0, &rx_message_struct); /* Read a message,

including the ID, data length and data, etc. */

 if((rx_message_struct.id_type == CAN_ID_STANDARD) && (rx_message_struct.standard_id ==

AT32 MCU CAN Quick Start Guide

2022.7.19 34 Ver 2.0.1

FILTER_STD_ID1))

 test_result++; /* If a standard frame (ID= FILTER_STD_ID1) is received, the test_result flag is

incremented by 1 */

 else if((rx_message_struct.id_type == CAN_ID_STANDARD) && (rx_message_struct.standard_id

== FILTER_STD_ID2))

 test_result++;/* If a standard frame (ID= FILTER_STD_ID2) is received, the test_result flag is

incremented by 1 */

 else if((rx_message_struct.id_type == CAN_ID_EXTENDED) &&

(rx_message_struct.extended_id == FILTER_EXT_ID1))

 test_result++;/* If an extended frame (ID= FILTER_EXT_ID1) is received, test_result flag is

incremented by 1 */

 else if((rx_message_struct.id_type == CAN_ID_EXTENDED) &&

(rx_message_struct.extended_id == FILTER_EXT_ID2))

 test_result++;/* If an extended frame (ID= FILTER_EXT_ID2) is received, test_result flag is

incremented by 1 */

 }

}

 GPIO configuration function

static void can_gpio_config(void)

{

 gpio_init_type gpio_init_struct;

 /* enable the gpio clock */

 crm_periph_clock_enable(CRM_GPIOB_PERIPH_CLOCK, TRUE); /* Enable the corresponding

GPIOB clock */

 gpio_default_para_init(&gpio_init_struct); /* Initialize GPIO configuration structure */

 /* configure the can tx, rx pin */

 gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER; /* GPIO drive

strength: strong */

 gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL; /* FPIO output mode: push-pull

output */

 gpio_init_struct.gpio_mode = GPIO_MODE_MUX; /* GPIO mode: multiplexed */

 gpio_init_struct.gpio_pins = GPIO_PINS_9 | GPIO_PINS_8; /* GPIO pins: pin8 & pin9 */

 gpio_init_struct.gpio_pull = GPIO_PULL_NONE; /* GPIO pull configuration: no pull-up, no pull-down

*/

 gpio_init(GPIOB, &gpio_init_struct); /* Write the above configuration into the corresponding register

*/

 gpio_pin_mux_config(GPIOB, GPIO_PINS_SOURCE9, GPIO_MUX_9); /* Configure GPIOB_pin9

mux9 (CAN_TX) */

 gpio_pin_mux_config(GPIOB, GPIO_PINS_SOURCE8, GPIO_MUX_9); /* Configure GPIOB_pin8

mux9 (CAN_RX) */

AT32 MCU CAN Quick Start Guide

2022.7.19 35 Ver 2.0.1

5.4 Test result

 If the data transmission is correct, LED2/3/4 on AT-START BOARD toggle once,

indicating four frames of data (ID=FILTER_EXT_ID1, FILTER_EXT_ID2,

FILTER_STD_ID1, FILTER_STD_ID2) are received.

AT32 MCU CAN Quick Start Guide

2022.7.19 36 Ver 2.0.1

6 Application case 3: CAN debugging in loopback
mode

Note: Note: All projects are built around keil 5. If users want to use them in other compiling

environments, please refer to AT32xxx_Firmware_Library_V2.x.x\project\at_start_xxx\templates (such as

IAR6/7, keil 4/5) for a simple change.

6.1 Function

Realize CAN loopback communication.

Loopback mode:

The loopback mode is used for self-test. In this mode, CAN internally feed the TX output back to RX

input, ignoring the actual state of CAN_RX pin. Therefore, it is not required to configure the

corresponding GPIO pins. If the corresponding GPIO pins are configured, the transmitted message

can be detected on CAN_TX, as shown in Figure 19. In addition, to avoid being affected by external

factors, CAN core ignores validation errors (the dominant bit is not detected at the

acknowledgement bit of data/remote frame) in loopback mode.

The hardware design of level converter (CAN loopback mode) is shown below.

Figure 19 CAN loopback mode

CAN

CANTX CANRX

Transmit Receive

6.2 Resources

1) Hardware

One AT-START BOARD of the corresponding series

2) Software

project\at_start_f435\examples\can\loopback_mode

6.3 Software design

1) Configuration process

 Configure GPIOs corresponding to the CAN1 TX and RX pins (not required in

loopback mode)

AT32 MCU CAN Quick Start Guide

2022.7.19 37 Ver 2.0.1

 Configure CAN basic settings

 Configure CAN baud rate

 Configure CAN filter

 Configure CAN interrupt

2) Code

 Main function

int main(void)

{

 system_clock_config(); /* Configure system clock */

 at32_board_init(); /* Configure AT-START BOARD basic settings, such as LED initialization, delay

initialization, etc. */

 nvic_priority_group_config(NVIC_PRIORITY_GROUP_4); /* Configure interrupt group priority */

 can_gpio_config(); /* Configure the GPIO corresponding to CAN1 (not required in loopback mode; if

it is configured, CAN_TX pin outputs data but CAN_RX pin does not receive external data, as shown

in Figure 16) */

 can_configuration(); /* Configure CAN, including CAN basic settings, baud rate, filter and interrupt */

 while(1)

 {

 can_transmit_data(); /* CAN1 transmits one standard data frame */

 at32_led_toggle(LED4); /* Toggle LED4 */

 delay_sec(1); /* delay for 1 second */

 }

}

 CAN configuration function

static void can_configuration(void)

{

 can_base_type can_base_struct;

 can_baudrate_type can_baudrate_struct;

 can_filter_init_type can_filter_init_struct;

 /* enable the can clock */

 crm_periph_clock_enable(CRM_CAN1_PERIPH_CLOCK, TRUE); /* Enable CAN clock */

 /* CAN basic configuration */

 can_default_para_init(&can_base_struct); /* Initialize CAN base configuration structure */

 can_base_struct.mode_selection = CAN_MODE_LOOPBACK; /* CAN mode: Loopback */

 can_base_struct.ttc_enable = FALSE; /* CAN time triggered communication mode (timestamp):

Disabled */

 can_base_struct.aebo_enable = TRUE; /* Automatic exit bus-off mode: Enabled */

 can_base_struct.aed_enable = TRUE; /* Automatic exit doze mode: Enabled */

 can_base_struct.prsf_enable = FALSE; /* Prohibit auto retransmission: Disabled (that is, auto

retransmission enabled, as specified in CAN protocol) */

 can_base_struct.mdrsel_selection = CAN_DISCARDING_FIRST_RECEIVED; /* Message

AT32 MCU CAN Quick Start Guide

2022.7.19 38 Ver 2.0.1

discarding rule when overflow: the previous message is discarded */

 can_base_struct.mmssr_selection = CAN_SENDING_BY_ID; /* Multiple message transmission

priority: message with the smallest identifier is first transmitted */

 can_base_init(CAN1, &can_base_struct); /* Write the above configuration into CAN master control

register */

 /* CAN baud rate configuration:

can baudrate, set boudrate = pclk/(baudrate_div *(1 + bts1_size + bts2_size))

 pclk=144M;

 boudrate = 144/(12*(1+8+3))=1Mbps

 */

 can_baudrate_struct.baudrate_div = 12; /* CAN division: 12 */

 can_baudrate_struct.rsaw_size = CAN_RSAW_1TQ; /* CAN sync jump width: 1Tq */

 can_baudrate_struct.bts1_size = CAN_BTS1_8TQ; /* CAN bit segment 1: 8Tq */

 can_baudrate_struct.bts2_size = CAN_BTS2_3TQ; /* CAN bit segment 2: 3Tq */

 can_baudrate_set(CAN1, &can_baudrate_struct); /* Write the above configuration into CAN bit

timing register */

 /* CAN filter configuration */

can_filter_init_struct.filter_activate_enable = TRUE; /* Enable filter */

 can_filter_init_struct.filter_mode = CAN_FILTER_MODE_ID_MASK; /* Filter mode: identifier mask

mode */

 can_filter_init_struct.filter_fifo = CAN_FILTER_FIFO0; /* Filter relation FIFO (FIFO1/FIFO1): select

FIFO0 */

 can_filter_init_struct.filter_number = 0; /* Filter bank select (0~27): 0 */

 can_filter_init_struct.filter_bit = CAN_FILTER_32BIT; /* Filter bit width: 32 bits */

 can_filter_init_struct.filter_id_high = 0; /* Filter ID high: 0 */

 can_filter_init_struct.filter_id_low = 0; /* Filter ID low: 0 */

 can_filter_init_struct.filter_mask_high = 0; /* Filter identifier mask high: 0 (all IDs can pass) */

 can_filter_init_struct.filter_mask_low = 0; /* Filter identifier mask low: 0 (all IDs can pass) */

 can_filter_init(CAN1, &can_filter_init_struct); /* Write the above base configurations into relevant

CAN filter registers */

 /* CAN interrupt configuration */

 nvic_irq_enable(CAN1_SE_IRQn, 0x00, 0x00); /* Interrupt priority setting and enable: CAN1 status

change/error interrupt */

 nvic_irq_enable(CAN1_RX0_IRQn, 0x00, 0x00); /* Interrupt priority setting and enable: CAN1

FIFO0 receive interrupt */

 can_interrupt_enable(CAN1, CAN_RF0MIEN_INT, TRUE); /* CAN1 FIFO0 non-empty interrupt

enable: An interrupt is generated when FIFO0 receives a frame of valid data */

 can_interrupt_enable(CAN1, CAN_ETRIEN_INT, TRUE); /* Error type record interrupt enable: An

interrupt is generated when ETR[2:0] is not equal to 0*/

 can_interrupt_enable(CAN1, CAN_EOIEN_INT, TRUE); /* CAN1 error interrupt enable: Master

switch for all error interrupts */

}

 CAN transmit function

AT32 MCU CAN Quick Start Guide

2022.7.19 39 Ver 2.0.1

static void can_transmit_data(void)

{

 uint8_t transmit_mailbox;

 can_tx_message_type tx_message_struct;

 tx_message_struct.standard_id = 0x400; /* Set the to-be-transmit data ID=0x400 */

 tx_message_struct.extended_id = 0;

 tx_message_struct.id_type = CAN_ID_STANDARD; /* To-be-transmitted data type

(standard/extended): standard data frame */

 tx_message_struct.frame_type = CAN_TFT_DATA; /* To-be-transmitted frame type (remote/data):

data frame */

 tx_message_struct.dlc = 8; /* To-be-transmitted data length (0~8): 8 */

 tx_message_struct.data[0] = 0x11; /* 1st byte: 0x11 */

 tx_message_struct.data[1] = 0x22; /* 2nd byte: 0x22 */

 tx_message_struct.data[2] = 0x33; /* 3rd byte: 0x33 */

 tx_message_struct.data[3] = 0x44; /* 4th byte: 0x44 */

 tx_message_struct.data[4] = 0x55; /* 5th byte: 0x55 */

 tx_message_struct.data[5] = 0x66; /* 6th byte: 0x66 */

 tx_message_struct.data[6] = 0x77; /* 7th byte: 0x77 */

 tx_message_struct.data[7] = 0x88; /* 8th byte: 0x88 */

 transmit_mailbox = can_message_transmit(CAN1, &tx_message_struct); /* Write the above to-be-

transmitted message into the transmit mailbox and request to send */

 while(can_transmit_status_get(CAN1, (can_tx_mailbox_num_type)transmit_mailbox) !=

CAN_TX_STATUS_SUCCESSFUL); /* Wait for transmit mailbox transmission success (the

transmission success flag of the corresponding transmit mailbox is set) */

}

 CAN receive interrupt handler

void CAN1_RX0_IRQHandler(void)

{

 can_rx_message_type rx_message_struct;

 if(can_flag_get(CAN1,CAN_RF0MN_FLAG) != RESET) /* non-empty judgment (number of

message >0) */

 {

 can_message_receive(CAN1, CAN_RX_FIFO0, &rx_message_struct); /* Read a message,

including the ID, data length and data, etc. */

 if(rx_message_struct.standard_id == 0x400) /* Check whether the received message is in

standard frame format whose ID=0x400 */

 at32_led_toggle(LED2); /* If the received message is in standard frame format with ID=0x400,

toggle LED2 */

 else

 at32_led_toggle(LED3); /* If not, toggle LED3 */

 }

}

 GPIO configuration function

AT32 MCU CAN Quick Start Guide

2022.7.19 40 Ver 2.0.1

static void can_gpio_config(void)

{

 gpio_init_type gpio_init_struct;

 /* enable the gpio clock */

 crm_periph_clock_enable(CRM_GPIOB_PERIPH_CLOCK, TRUE); /* Enable the corresponding

GPIOB clock */

 gpio_default_para_init(&gpio_init_struct); /* Initialize GPIO configuration structure */

 /* configure the can tx, rx pin */

 gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER; /* GPIO drive

strength: strong */

 gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL; /* FPIO output mode: push-pull

output */

 gpio_init_struct.gpio_mode = GPIO_MODE_MUX; /* GPIO mode: multiplexed */

 gpio_init_struct.gpio_pins = GPIO_PINS_9 | GPIO_PINS_8; /* GPIO pins: pin8 & pin9 */

 gpio_init_struct.gpio_pull = GPIO_PULL_NONE; /* GPIO pull configuration: no pull-up, no pull-down

*/

 gpio_init(GPIOB, &gpio_init_struct); /* Write the above configuration into the corresponding register

*/

 gpio_pin_mux_config(GPIOB, GPIO_PINS_SOURCE9, GPIO_MUX_9); /* Configure GPIOB_pin9

mux9 (CAN_TX) */

 gpio_pin_mux_config(GPIOB, GPIO_PINS_SOURCE8, GPIO_MUX_9); /* Configure GPIOB_pin8

mux9 (CAN_RX) */

6.4 Test result

 The LED2 on AT-START BOARD blinks, indicating a message in standard data format

with ID=0x400 is received, and LED4 keeps blinking, indicating the program is working

properly.

AT32 MCU CAN Quick Start Guide

2022.7.19 41 Ver 2.0.1

7 Revision history

Table 4 Document revision history

Date Version Revision note

2021.5.20 2.0.0 Initial release

2022.7.19 2.0.1
1. Modified the CAN baud rate calculation tool as the

Artery_CAN_BitRate_Configuration.

AT32 MCU CAN Quick Start Guide

2022.7.19 42 Ver 2.0.1

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services; ARTERY assumes no liability for

purchasers’ selection or use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous

representation in any forms. If any part of this document involves third party’s products or services, it does NOT imply that ARTERY

authorizes the use of the third party’s products or services, or permits any of the intellectual property, or guarantees any uses of the third

party’s products or services or intellectual property in any way.

Except as provided in ARTERY’s terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty,

relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a

particular purpose (based on the corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other

intellectual property right.

ARTERY’s products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have

specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements

on product function safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other

applications that may cause injuries, deaths or property damages. Since ARTERY products are not intended for the above-mentioned

purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks

caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with

all statutory and regulatory requirements regarding these uses.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will

immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and

ARTERY disclaims any responsibility in any form.

© 2022 Artery Technology -All rights reserved

	1 Introduction to CAN
	2 CAN protocol
	2.1 CAN bus topology
	2.2 CAN bus physical layer features
	2.3 Frame type
	2.4 Frame structure
	2.5 Bit stuffing
	2.6 Bit format
	2.7 Synchronization mechanism
	2.8 Arbitration mechanism
	2.9 CAN error handling mechanism
	2.9.1 Error type
	2.9.2 Error state

	3 AT32 CAN
	3.1 Function overview
	3.2 Message transmission
	3.3 Message reception
	3.4 Filter
	3.5 CAN baud rate and sample point
	3.5.1 Baud rate formula
	3.5.2 Sample point formula
	3.5.3 Baud rate configuration tool

	4 Application case 1: CAN communication in normal mode
	4.1 Function
	4.2 Resources
	4.3 Software design
	4.4 Test result

	5 Application case 2: CAN receive filter
	5.1 Function
	5.2 Resources
	5.3 Software design
	5.4 Test result

	6 Application case 3: CAN debugging in loopback mode
	6.1 Function
	6.2 Resources
	6.3 Software design
	6.4 Test result

	7 Revision history

