
Modbus on AT32 MCU 

2022.06.13 1 Ver 2.0.0 

AN0131 

Application Note 

Modbus on AT32 MCU 

 

Introduction 
This application note describes how to migrate or move FreeMODBUS protocol to AT32F43x 
microcontroller. Source code included in this user manual demonstrates how the Modbus program 
works in which the microcontroller as a Modbus slave is connected with a host computer via RS485 
or RS232 so as to communicate with Modbus Poll debugging tool as a Modbus master. 

 

Note: The codes included in this file are built around ARTERY V2.x.x BSP. Attention should be paid to the 
possible differences in use due to different BSP versions. 

 

Applicable products: 

Model 

AT32F435xx 

AT32F437xx 

AT32F425xx 



Modbus on AT32 MCU 

2022.06.13 2 Ver 2.0.0 

Contents 

 Overview ................................................................................................................. 5 

 Modbus protocol ....................................................................................................... 5 

 FreeModbus protocol stack ...................................................................................... 9 

 Modbus Poll debugging software .............................................................................. 9 

 AT32 hardware requirements ............................................................................. 10 

 Move FreeMODBUS to AT32 MCU ...................................................................... 12 

 Get started.............................................................................................................. 12 

 Add FreeMODBUS source code ............................................................................. 12 

 How to change project code ................................................................................... 14 

 How to implement device functions ........................................................................ 15 

 Device testing ...................................................................................................... 17 

 Revision history ................................................................................................... 19 



Modbus on AT32 MCU 

2022.06.13 3 Ver 2.0.0 

List of tables 

Table 1. Modbus data model................................................................................................................ 6 

Table 2. Modbus configuration parameters ....................................................................................... 14 

Table 3. Document revision history .................................................................................................... 19 



Modbus on AT32 MCU 

2022.06.13 4 Ver 2.0.0 

List of figures 

Figure 1. Modbus communication stack .............................................................................................. 5 

Figure 2. General Modbus frame ......................................................................................................... 5 

Figure 3. Modbus transaction (error free) ............................................................................................ 6 

Figure 4. Modbus transaction (exception error) .................................................................................. 6 

Figure 5. Public function code definition .............................................................................................. 7 

Figure 6. Unicast mode ........................................................................................................................ 7 

Figure 7. Broadcast mode ................................................................................................................... 8 

Figure 8. Bit order in RTU and ASCII .................................................................................................. 8 

Figure 9. AT32 Modbus structure block diagram ............................................................................... 10 

Figure 10. AT-START-F435 V1.0 evaluation board ........................................................................... 10 

Figure 11. AT-START and AT32-Comm-EV ...................................................................................... 11 

Figure 12. FreeMODBUS source code files ...................................................................................... 12 

Figure 13. freemodbus project folder ................................................................................................. 12 

Figure 14. freemodbus project items ................................................................................................. 13 

Figure 15. freemodbus project folder setup ....................................................................................... 13 

Figure 16. Serial interface print info ................................................................................................... 17 

Figure 17. Modbus Poll connection setup ......................................................................................... 17 

Figure 18. Modbus Poll read/write definition ..................................................................................... 18 

Figure 19. Modbus Poll file interface ................................................................................................. 18 



Modbus on AT32 MCU 

2022.06.13 5 Ver 2.0.0 

 Overview 

Modbus is an industrial-standard serial communications protocol. It is published by Modicon 

Company (now Schneider Electric) in 1979 for communication over programmable logic controllers.  

Modbus is regarded as an industry-standard communications protocol and a popular form of 

connection between industrial electronic devices. 

 Modbus protocol 

Modbus protocol uses master and slave mode for communications. A master takes initiative to 

query and operate a slave. Modbus Master refers to the protocols used by a master device, 

whereas Modbus Slave refers to the protocols used by a slave device. Typical master devices 

include industrial control computers and industrial controllers. Programmable logic controller (PLC) 

is used as a typical slave device. 

MODBUS is an application layer messaging protocol, positioned at level 7 of the OSI model, which 

provides client/server communication between devices connected on different types of buses or 

networks. 

Physical interfaces for Modbus protocol can be serial interfaces (including RS232, RS485) and 

Ethernet. 

Figure 1. Modbus communication stack 

 

The MODBUS protocol defines a simple protocol data unit (PDU) independent of the underlying 

communication layers. The mapping of MODBUS protocol on specific buses or network can 

introduce some additional fields on the Application Data Unit (ADU). 

Figure 2. General Modbus frame 

 

 

 



Modbus on AT32 MCU 

2022.06.13 6 Ver 2.0.0 

When the server responds to the client, it uses the function code field to indicate either a normal 

response (error-free) or that some kind of error occurred (called an exception response). It is 

desirable to manage a time out in order not to indefinitely wait for an answer which will perhaps 

never arrive. 

Figure 3. Modbus transaction (error free) 

 

Figure 4. Modbus transaction (exception error) 

 

MODBUS uses a “big-Endian” representation for addresses and data items. This means that when 

a numerical quantity larger than a single byte is transmitted, the most significant byte is sent first. 

So for example, if a 16-bit register value is 0x1234, then the 0x12 is sent first, followed by 0x34. 

MODBUS bases its data model on a series of tables that have distinguishing characteristics. The 

four primary tables are: 

Table 1. Modbus data model 

Primary tables Object type Access type Descriptions 

Discrete input Single bit Read-only This type of data can be provided by an I/O system. 

Coils Single bit Read-Write This type of data can be alterable by an application program. 

Input registers 16bit word Read-only This type of data can be provided by an I/O system. 

Holding registers 16bit word Read-Write This type of data can be alterable by an application program. 

There are three categories of MODBUS Function codes. They are: public function codes, user-

defined function codes and reserved function codes 

Public function codes are well-defined function codes, guaranteed to be unique, validated by the 

MODBUS.org community, and have available conformance test.  

 

 



Modbus on AT32 MCU 

2022.06.13 7 Ver 2.0.0 

Figure 5. Public function code definition 

 

Modbus serial link protocol is a master/slave protocol. Only one master node is connected to a 

serial bus at one time, whereas one or several slave nodes (numbered up to 247) are linked to the 

same bus. Modbus communication is always initiated with a master node. Slave nodes never send 

data unless they receive requests from a master node. No communication takes place between 

slave nodes. A master node sends only one Modbus transaction at one time. 

A master node sends a Modbus request to slave nodes in the following two modes: 

1. Unicast mode: A master node access a slave node at a given address. After receiving and 

handling a request from a master node, the slave node returns a message (known as response 

or answer) to the master node. Each of the slave nodes must have its own unique address 

ranging from 1 to 247 in order to be addressed accurately. 

Figure 6. Unicast mode 

 

2. Broadcast mode: A master node sends a request to all the slave nodes. In this case, no 

response is returned/sent to the master node. Broadcast request is usually used for writing 

commands. All the devices must accept “write function” of broadcast mode. Address 0 is 

dedicated to a representation of broadcast data. 

 

 

Master 

Request 

Answer 

Slave Slave Slave 



Modbus on AT32 MCU 

2022.06.13 8 Ver 2.0.0 

Figure 7. Broadcast mode 

 

Modbus defines two serial transport modes: RTU (default) and ASCII. 

Figure 8. Bit order in RTU and ASCII 

 

All the devices on Modbus serial line shall have the same transport modes and serial port 

parameters. For more information about Modbus, please visit Modbus official website at 

https://modbus.org. 

 

 

 

Master 

Slave Slave Slave Slave 

Req 

https://modbus.org/


Modbus on AT32 MCU 

2022.06.13 9 Ver 2.0.0 

 FreeModbus protocol stack 

FreeMODBUS is an implementation of the popular Modbus communication protocol specially 

targeted for embedded systems. It supports RTU/ASCII modes and TCP protocol. FreeMODBUS is 

available under BSD license, meaning that it can be applied in business scenarios. At present, 

FreeMODBUS offers only one free protocol stack for Modbus slave nodes. This protocol is written 

with ANSI C and supports multiple variables. 

The following sections will provide users with information on how to implement the major features of 

Modbus slave nodes on the AT32F435 microcontroller through FreeMODBUS protocol. The source 

codes based on AT32F43x_StdPeriph_Lib and FreeMODBUS are provided as well. Meanwhile, it 

also demonstrates how to quickly establish RS485-based Modbus slave nodes using AT32-Comm-

EV Board and AT-START Board. 

 Modbus Poll debugging software 

Modbus Poll is a Modbus master simulator. It supports Modbus RTU, ASCI and TCP/IP transport 

modes. It can be used to assist engineers in debugging Modbus slave devices, testing and 

simulating Modbus protocol communications. With multiple file interfaces/windows, Modbus Poll is 

able to monitor multiple Modbus slave devices and data fields simultaneously. Each interface or 

window offers such setting options as slave device ID, function code, address code, length and poll 

interval. Modbus Poll supports four primary tables of Modbus data models and multiple public 

function codes. 

In the example case, we download and install Modbus Poll on PC as a Modbus master, which is 

connected to AT-START Board (as a Modbus slave) via USB-to-RS485 module so as to establish a 

complete Modbus communication network for testing. 



Modbus on AT32 MCU 

2022.06.13 10 Ver 2.0.0 

 AT32 hardware requirements 

Hardware includes AT32-Comm-EV Board and AT-START Board. 

The demo in this file uses such peripherals as USART and TMR. Users can also select RS232 or 

RS485 for connecting Modbus physical layer according to their needs. 

Figure 9. AT32 Modbus structure block diagram 

 

 AT-START Board 

The demo is based on AT-START-F435 board. It can provide RS232-based Modbus 

communications. 

Figure 10. AT-START-F435 V1.0 evaluation board 

 

 AT32-Comm-EV Board 

This board supports RS485-based Modbus communications. 

 

AT-START Board

标准库

FreeMODBUS
USART TMR

AT32-Comm-EV 
Board

上位机

Modbus 
Poll

USB转
RS485

USB转
TTL

或

 

Host computer 

Or 

Standard library 

USB to 

RS485 

USB to 

TTL 



Modbus on AT32 MCU 

2022.06.13 11 Ver 2.0.0 

Figure 11. AT-START and AT32-Comm-EV 

 
 



Modbus on AT32 MCU 

2022.06.13 12 Ver 2.0.0 

 Move FreeMODBUS to AT32 MCU 

 Get started 

Download and install the latest version of BSP&PACK files, install and configure according to user 

manuals. 

This application note and example case are written with BSP&PACK of the 

AT32F4xx_StdPeriph_Lib_V2.x.x.  

In the at_start_f435 folder there is a temple project which can be used as a reference for users to 

make corresponding modifications. Change folder name and project name to freemodbus, and add 

FreeMODBUS source code. 

 Add FreeMODBUS source code 

Download the latest version of FreeMODBUS source code from FreeMODBUS website or Github. 

After unzipping the package, you can see the following contents in it, as shown in Figure 12. 

This application note and example case are based on freemodbus-v1.6. 

Figure 12. FreeMODBUS source code files 

 

After unzipping, copy modbus folder and demo\BARE\port folder to the freemodbus (previously 

created), change port folder name to modbus_port as shown in Figure 13. 

Figure 13. freemodbus project folder 

 

Open project files, and follow two steps below to proceed. Users can also refer to the example case 

provided by ARTERY for more information. 

1. Add all .c files (excluding tcp) within Modbus and modbus_port folder to project 

 

 



Modbus on AT32 MCU 

2022.06.13 13 Ver 2.0.0 

Figure 14. freemodbus project items 

 

2. Add the path of the .h files corresponding to .c files into the Folder setup. 

Figure 15. freemodbus project folder setup 

 

 

 

 



Modbus on AT32 MCU 

2022.06.13 14 Ver 2.0.0 

 How to change project code 

1. Change “port.h” file. Add the header file “at32f435_437.h” to the “port.h” file. Supplement 

interrupts enable/disable macro definitions. Mask TRUE and FALSE definitions as they are 

already defined in BSP header file. 

2. Change “portserial.c” and “porttimer.c” files. Add the underlying driver codes of USART and 

TMR peripherals to these files. Users can also modify according to their hardware environment 

or refer to ARTERY-provided example case. 

3. Special attention: The DT field in the USRAT register contains data bit and check bit. 

Therefore when reading data received via USART, the FreeMODBUS source code would 

handle all DT values as data bits because of the differences of MCU from supplier to supplier. 

For this reason, it is necessary to change source code in the “mbascii.c” file. For more 

information, please refer to the demo. 

4. Create and add “mbtask.c/.h” file. This file is used for creating a Modbus communication task 

(as a slave) to call API layer of the FreeMODBUS protocol, and build Modbus data models (four 

primary tables) so as to conduct communication testing with Modbus Poll (as a master). 

 “mbtask.c/.h” can be used for the following tasks: 

 Read/write holding registers 

 Read input registers 

 Read/write coils 

 Read discrete inputs 

 “mbtask.h” defines Modbus data models and parameters necessary for communication: 

Table 2. Modbus configuration parameters 

Parameter Description 

MB_SLAVE_ADDRESS Set slave address 

MB_BAUDRATE Set communication baud rate 

REG_INPUT_START Input register start address 

REG_INPUT_NREGS Number of Input register s 

REG_HOLDING_START Holding register start address 

REG_HOLDING_NREGS Number of holding registers 

REG_COILS_START Coil start address 

REG_COILS_SIZE Coil size 

REG_DISCRETE_START Discrete input start address 

REG_DISCRETE_SIZE Discrete input size 

 



Modbus on AT32 MCU 

2022.06.13 15 Ver 2.0.0 

 How to implement device functions 

1. Write the “void modbus_task(void)” function in the “mbtask.c” file to call API layer of Modbus 

protocol so as to conduct Modbus slave tasks.  

 

void modbus_task(void) 

{ 

  eMBErrorCode    eStatus; 

   

  eStatus = eMBInit(MB_RTU, MB_SLAVE_ADDRESS, 0, MB_BAUDRATE, MB_PAR_NONE); 

  if(MB_ENOERR == eStatus) 

  { 

    printf("modbus init ok\r\n"); 

    eStatus = eMBEnable(); 

    if(MB_ENOERR == eStatus) 

    { 

      printf("modbus enable ok\r\n"); 

    } 

    else 

    { 

      printf("modbus enable fail, error code: %u\r\n", eStatus); 

    } 

  } 

  else 

  { 

    printf("modbus init fail, error code: %u\r\n", eStatus); 

  } 

  if(MB_ENOERR != eStatus) 

  { 

    printf("exit modbus task.\r\n"); 

    return; 

  } 

  printf("start modbus pooling..\r\n"); 

  for(;;){ 

    eMBPoll(); 

  } 

} 



Modbus on AT32 MCU 

2022.06.13 16 Ver 2.0.0 

2. In “main.c” file, use the “int main(void)” to call the “modbus_task()” function.  

 

int main(void) 

{ 

  system_clock_config(); 

  at32_board_init(); 

  uart_print_init(115200); 

  printf("\r\nstart test modbus..\r\n"); 

 

  modbus_task(); 

  while(1); 

} 



Modbus on AT32 MCU 

2022.06.13 17 Ver 2.0.0 

 Device testing 
Source code migration is complete until now. Compile and download it, open serial interfaces 

connected to AT-Link, the following information will be print out on the window. 

Figure 16. Serial interface print info 

 

This indicates that a slave device is running normally. 

At this point, connect the slave to a host computer, open Modbus Poll software, and use it as a 

master for unicast communication, which is done by sending a request and receiving a reply. 

1. Open Modbus Poll connection setup, select RTU Mode (same as a slave), and configure serial 

port parameters (they must be the same as those of slave)  

Figure 17. Modbus Poll connection setup 

 

 

 



Modbus on AT32 MCU 

2022.06.13 18 Ver 2.0.0 

2. Define Modbus Poll read/write commands. Figure 18 shows an example with a 03 function code 

(read holding registers). Users can also test other function codes in the same way. 

Figure 18. Modbus Poll read/write definition 

 

3. In Modbus Poll file interface/window, you can see the values read from holding registers. These 

data are consistent with the ones of holding registers when they were initialized in a slave 

program. This means that test is successful. 

Figure 19. Modbus Poll file interface 

 

 

 

 

 



Modbus on AT32 MCU 

2022.06.13 19 Ver 2.0.0 

 Revision history 

Table 3. Document revision history 

Date Revision Changes 

2022.06.13 2.0.0 Initial release 

 



Modbus on AT32 MCU 

2022.06.13 20 Ver 2.0.0 

 

 

 

 

 

 

 

 

 

 

 

 

IMPORTANT NOTICE – PLEASE READ CAREFULLY 

Purchasers are solely responsible for the selection and use of ARTERY’s products and services, and ARTERY assumes no liability 

whatsoever relating to the choice, selection or use of the ARTERY products and services described herein. 

No license, express or implied, to any intellectual property rights is granted under this document. If any part of this document deals with any 

third party products or services, it shall not be deemed a license grant by ARTERY for the use of such third party products or services, or any 

intellectual property contained therein, or considered as a warranty regarding the use in any manner whatsoever of such third party products 

or services or any intellectual property contained therein. 

Unless otherwise specified in ARTERY’s terms and conditions of sale, ARTERY provides no warranties, express or implied, regarding the 

use and/or sale of ARTERY products, including but not limited to any implied warranties of merchantability, fitness for a particular purpose 

(and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right.  

Purchasers hereby agrees that ARTERY’s products are not designed or authorized for use in: (A) any application with special requirements 

of safety such as life support and active implantable device, or system with functional safety requirements; (B) any air craft application; (C) 

any automotive application or environment; (D) any space application or environment, and/or (E) any weapon application. Purchasers’ 

unauthorized use of them in the aforementioned applications, even if with a written notice, is solely at purchasers’ risk, and is solely 

responsible for meeting all legal and regulatory requirement in such use. 

Resale of ARTERY products with provisions different from the statements and/or technical features stated in this document shall 

immediately void any warranty grant by ARTERY for ARTERY products or services described herein and shall not create or expand in any 

manner whatsoever, any liability of ARTERY. 

© 2023 Artery Technology -All rights reserved 


	1 Overview
	1.1 Modbus protocol
	1.2 FreeModbus protocol stack
	1.3 Modbus Poll debugging software

	2 AT32 hardware requirements
	3 Move FreeMODBUS to AT32 MCU
	3.1 Get started
	3.2 Add FreeMODBUS source code
	3.3 How to change project code
	3.4 How to implement device functions

	4 Device testing
	5 Revision history

