?r ? AT32A403A Security Library Application Note

ANO0189
Application Note

AT32A403A Security Library Application Note

Introduction

This application note introduces the security library (sLib) application principle of AT32A403
AMCUSs, operation methods and example projects.

Applicable products:

Part number AT32A403A

2023.7.11 1 Ver 2.0.0

_\)r ? AT32A403A Security Library Application Note
Contents

1 OVEBIVIBW ..ttt ettt ettt sttt e et e s s et s et e s e s s s s e e e e s e s s e e seeeeeennn e 6

2 ApPPlCatioN PrINCIPIES oo e e e e e e e e e e e eeeas 7

2.1 Application prinCiple Of SLIDcooiiiiiii 7

2.2 HOW to enable SLID ProtECLIONuuuiuiiiiiiiiiiiiititiiiiititebtbbeebbebeeeeeeebeeeaeeebeeeeebeeeeeneneeenes 9

2.3 How to disable SLID ProteCHION..........uuuuiiiiiiiiiiiiiiiiiieiiiiiiee e enenenene 9

2.4 Compile and execute program iN SLIDuuuieiuiiieiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeenee. 10

2.4.1 Setting interrupt vector table as sLib area not allowed.............ccccceeeeeviciiieiieee e, 11

2.4.2 Correlation between sLib area and user CO0E ar€a...........occuveeeerueeeeiniiieeee i 11

3 Examples of sLib application ... 14

I B o= To (U1 €= 4 1= o £ PSPPI 14

K Tt I B o = 1 (0 1= 1 (S OO PP PP PR RPN 14

1.2 SOMWAIE ..ottt e e et et e e e b e e e naeee s 14

3.2 OVEBIVIBW ..ttt ettt ettt sttt ettt sttt et nnnnnnnenes 14

3.3 SLIB-protected code: FIR loW-pass filterceuviiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee 15

3.4 Project_LO: Example for Solution ProVIderseeeeeeeeeieeiemmeemieeieieiieeeeeeeeeeeeeeeee 16

3.4.1 Generate eXeCUute-0NlY COUEoooiiiiiiiiii e s 16

3.4.2 Compile security library address.........cooocueiiiiiiiiee e 18

3.4.3 Enable SLIbD ProteCON........coii it 22

3.4.4 ProjeCt_LO @XECULION PIrOCESSceiiiuiiieeiiiiiieeeiiieeeeeeteeaessteeeeesneeeeeannteeeeesseeeeeannneeens 24

3.4.5 Generate header file and symbol definition file............cco e, 26

3.5 Project_L1: example fOr N0 USEISuuuuiieiiiiiiiiiieiiiieiieiiereeiaeesseneneneesesneneeenenennne 27

3.5.1 Create user appliCation PrOJECTcuiiii it e e 28

3.5.2 Add symbol definition file t0 ProjECteviiiiiiiiiiiie e 29

3.5.3 Call functions in SLib-proteCted area..........ccueeiiieeiieeiiiee e 30

3.5.4 ProjeCt_L1 @XECULION PrOCESSccciiuiiiieiitiiieaiiieeeeeitee ettt e e et e e e aibe e e e s abeee e e e naeee s 30

3.5.5 SLIB protection in debug MOde...........cooiiiiiiiii e 31

4 Integrate codes and downloadouuuiiiiiiii i 35

4.1 Program COUES SEPArALElY ... 35

4.2 Integrate and Program COUEBSuuuuuiiieeeiiieeiiiiiaae e e e eeeetrtii e e e e e e eeesasn e e eaeaeeees 38

5 REVISION NISTOTMY et e e e e e e eeeannns 41

2023.7.11 - - 2 - T Ver2.00

’I?F ? AT32A403A Security Library Application Note

List of tables

Table 1. FIash Size Of AT32A403A SEIIEScceuueieieiee ettt e e et e e e et e s e et e s s seaa e e s saaaeeseanaeeans 8
Table 2. Document reviSion NISTOMY..........ouiiii e 41
S D N N S] -

2023.7.11 3 Ver 2.0.0

<[

5

AT32A403A Security Library Application Note

List of figures

2023.7.11

Figure 1. Mapping of main Flash memory designed with SLiD..........cceovvveiiiiiii e 8
Figure 2. Literal pOOl @XamPIE (1)uuuuriiieeeeiiiiiiieeee e e e e e e e e e e e e st e e e e e e e e ssnneeeeeeeeeesennnnneneeeeaeeas 10
Figure 3. Literal pO0l @XamMPIE (2) ...c.coueiieiiiiee ettt ettt e et e e e et e e e s anreeaeaan 11
Figure 4. Example of function in sLib area calling the function in user code area............ccccoccueeennne 12
Figure 5. Example of user-defined fuNCHON.............ooi e 13
Figure 6. Example of appliCation PrOCESSccoiiiiiiiiiiiiie ettt e e e eaee e e 14
Figure 7. Example Of @pPlICALIONueiiiiieii i e e e e e e e e e e e e e snnneeeeeaaeeas 15
Figure 8. FIR IOW-PASS fIIEIcci i e e e e e e e e e e e e nnrraeeeeeeeas 15
Figure 9. Enter Option interface iN Keil...........c.uuiiiiire e e e 16
Figure 10. Tick Execute-only Code iN Keil...........ueiiiiiiiiiiieieee e e e e e 17
Figure 11. Enter Option interface iN ARooi et saeeeeeeae 17
Figure 12. Set C/C++ ComMPIlEr iN TAR ...ooii e et e e s saeeeeeeae 18
Figure 13. Main Flash memory mapping and RAM Partitioncoooiuieeeiiiiiees e 19
Figure 14. Set LINKEE IN KEIl......oiuiiii ettt ettt et e e st e e e e snbee e e s aneaeaeaan 19
Figure 15. Modify scatter file in Keil...........oouuiiiiiie e 20
Figure 16. Modify SLIB RAM address inN KeIlccuueiiiiiiiiiiiiee e e e e e snnneneea e 20
Figure 17. Modify SLIB constant address iN KEIL.........ccccuuviiiiieiii e 20
Figure 18. SLIB address definition iNiCf fileoovriiiiiii e 21
Figure 19. Address assignment iNQCT fille............uuiiiiri oo 21
Figure 20. Modify IP-Code RAM N ICF fil@.......eiiiieee e 21
Figure 21. Modify SLIB used constant addreSs iN TARocuiii i 22
Figure 22. Configure ICP PrOgramMEr........c..uieeiiiieeeeiiieeeeeetieee e eeiieeeesstaeeessseeeeessnseeeessnseeeessnnseeeeanns 23
Figure 23. Set parameters in DOWNIOAd FOMMcooiiiiiiiiiiiee e e e e e e e 24
Figure 24. Project_LO @XECULION PIrOCESSccuuvriiiiieeeeiisitrteeeeeeaesssssssseneeeaeessssssssneeeaeeesssnnnsseeeeeeees 25
Figure 25. Set MiSC CONIOIS IN KEIlcoiiiiiiiiiiiieee e e e e e e e e aeeeaee s 26
Figure 26. Modified fir_filter SYMBOLIXE.........c.eiiiieee e e 26
Figure 27. Set BUild ACHIONS IN TARooii i e e e e e e e e e e aeeaaaeeas 27
Figure 28. Edit steering_file.tXt CONENT..........ciiiiiiii e 27
Figure 29. Modified SCAEN fil........couiiiiieieie e e 28
Figure 30. MOIfied QCf filE........eiieee e e 28
Figure 31. Add symbol definition file Keil...........c.ooiiiiiii e 29
Figure 32. Modify symbol definition file as “Object file”............coo e 29
Figure 33. Add symbol definition file iN TARooirii i 30
Figure 34. Project L1 @XECULION PIrOCESSccuuvrieiieeeeieiiiiteeeeeeeeessssateeeeeaaeesssssssaaeeeeaeesasnnnsssneeeaaees 31

e 4 - T T Ver2.00

? r ? AT32A403A Security Library Application Note
Figure 35. Set Show DisassemDbly at AAAIESScouveiiiiiiiiiiiiee e 32
Figure 36. Set SNOW COdE At AQAIESSccoiiiiiiiieiee e e e e e e e s e e e e e e e snnreaeeeeeeeas 32
FIQUIPE 37. VIBW COURSevtiiiiiiee e e ietitieee e e e e e e sttt et e e e e s et e e e e e e e e ssns e aeeeeaeeeeasnssteaeeeeeeeeannnnsnnnnneeaeeas 32
Figure 38. VIeW COUES iN IMEMIOIYuuiiiiieeieiiiiiiieee e e e e s esteee e e e e e e s s e e e e e e e e essssaeaeeeeeeesesnnnneneneeaeeas 33
Figure 39. View SLIB_DATA start SECtOr iN MEMOIYcccoiiiiiiiiiiiiie ettt 33
FIQUIE 40. SLIB WIILE TEST .. .eeiiii ettt ettt e ettt e e et e e e ettt e e e enbe e e e e anbeeeaeanreeaeaan 33
Figure 41. Write protection error INTEITUPLooiiiiii ettt e e e et e e e sneeeaeeaee 34
FIQUIE 42. SAVE SLIB COUBS ...ttt ettt ettt et e e e ettt e e e s nbe e e e e anbee e e e anreeaeaan 35
Figure 43. Generate .bin file Of SLIB COUEuuviiiiiiiiiiiee e e e 36
Figure 44.0nline programming t0 MCU VIa ICPcooiiiiiiiiiiie et e e 36
Figure 45. Offline programming t0 MCU Via AT-LINKc..uuuiiiieeeiiiiieieeee e ssseeeee e e e e eseneeeeeee e e 37
Figure 46. End users program COUES 10 MCUccouiiiiiiiiiiiiiiee e e e s e e e e e e e nsnneeeeeaee s 38
Figure 47. Set OffINE PrOJECT. et st e e et e e e e s neeeeeean 39
Figure 48. Add ProjeCt fileeoi e e e nraeaeean 40

2023711 T 5 - T T verz00

?r ? AT32A403A Security Library Application Note

1 Overview

As more and more MCU applications require complex algorithms and middleware solutions, it has
become an important issue that how to protect IP-Codes (such as core algorithms) developed by
software solution providers.

The AT32A403Aseries MCUs are designed with a security library (sLib) to protect important IP
Codes against being changed or read by the end user’s program.

This application note details the sLib application principle and operation methods of AT32A403A
MCUs.

2023.7.11 6 Ver 2.0.0

_\)r ? AT32A403A Security Library Application Note

2023.7.11

Application principles

Application principle of sLib

Security library is a defined area protected by a code in the main memory, so that solution
providers can program core algorithm into this area, and the rest of the area can be used for
secondary development by end customers.

Security library contains instruction security library (SLIB_INSTRUCTION) and data security
library (SLIB_DATA); users can select part of or the whole security library for instruction
storage, but using the whole security library for storing data is not supported.

Program codes in the instruction security library (SLIB_INSTRUCTION) can only be fetched
though I-Code bus (can only be executed) but not be read through D-Code bus (including
ISP/ICP debug mode and programs that boot from internal RAM). When reading the
SLIB_INSTRUCTION area, values are all read OxFF.

The data security library (SLIB_DATA) can only be read through D-Code bus, but data cannot
be written to it.

Program codes and data in the security library cannot be erased unless the correct code is
keyed in. If a wrong code is keyed in, in an attempt of writing or erasing the security library, a
warning message will be issued by EPPERR=1 in the FLASH_STS register.

The program code and data in security library are not erased when the end users perform a
mass erase on the main Flash memory.

Users can write the programmed password in the SLIB_PWD_CLR register to disable security
library protection. When the security library protection is disabled, the chip will perform a mass
erase on the main Flash memory (including the contents of security library). Therefore, even if
the code defined by the software solution provider is leaked, the program code will not be
leaked.

The mapping of main Flash memory featured with sLib is shown in Figure 1. The program codes in

security library can be easily called and executed by end users, but cannot be read directly.

7 Ver 2.0.0

_\)r ? AT32A403A Security Library Application Note

Figure 1. Mapping of main Flash memory designed with sLib

User_Code_Start@

USER CODE

User_Code End@

SLIB_Start@

SLIB_INSTRUCTION

SLIB_DATA

SLIB_End@

The security library is set by sectors, and the size of each sector is subject to the specific MCUs.
Table 1 lists the main Flash size, sector size and configurable range of AT32A403A series MCUs.

Table 1. Flash size of AT32A403A series

Model Internal Flash size (Byte) Sector size (Byte) Configurable range

Sector 2 ~ 63
(0x08001000 ~ OX0801FFFF)

AT32A403AxC 256K 2K

Sector 2 ~ 63
AT32A403AXE 512K 2K
(0x08001000 ~ 0x0801FFFF)
Sector 2 ~ 63
AT32A403AXG 1024K 2K

(0x08001000 ~ Ox0801FFFF)

2023.7.11 8 Ver 2.0.0

-
X

)
X

AT32A403A Security Library Application Note

2.2

2.3

2023.7.11

How to enable sLib protection

By default, security library setting register is unreadable and write-protected. To enable write

access to this register, security library should be unlocked first by writing 0XA35F6D24 to the

SLIB_UNLOCK register. Then check the SLIB_ULKF bit in the SLIB_MISC_STS register to verify if

it is unlocked successfully. Then, write the programmed value into the security library setting

register.

The steps to enable security library are as follows:

® Check the OBF bit in the FLASH_STS register to confirm that there is no other ongoing
programming operation;

® \Write 0xA35F6D24 to the SLIB_UNLOCK register to unlock security library;

® Check the SLIB_ULKF bit in the SLIB_MISC_STS register to verify that it is unlocked

successfully;

® Set the area to be protected in the SLIB_SET RANGE register, including the addresses of
instruction area and data area;

Wait until the OBF bit becomes “07;

Set security library password in the SLIB_SET PWD register;
Wait until the OBF bit becomes “0”;

Program the code to be saved in security library;

Perform system reset, and then reload security library setting word;

Read the SLIB_STSO0/STS1 registers to verify the security library setting.
Note:

® |tis allowed to set security library in the main Flash memory; refer to Table 1 for the
configuration range;

® The security library code must be programmed by sectors, with its start address aligned with
the main Flash memory address;

® The interrupt vector table is in data type and usually placed in the first sector (sector0, which
should not be configured as security library) of the main Flash memory.

® Program codes to be protected by the security library should not be placed in the first 4 KB of
the Flash memory.

For details about security library setting register, refer to AT32A403A Series Reference Manual.

The security library can be enabled by the slib_enable() function in main.c of project_I0. In addition,
users can use Artery ICP or ISP tools for configuration.

How to disable sLib protection

The security library protection can be disabled by writing the previously programmed password to
the SLIB_PWD_CLR register. While disabling security library protection, MCU will perform mass
erase on the main Flash memory (including the contents of security library).

9 Ver 2.0.0

<[

? AT32A403A Security Library Application Note

2.4

2023.7.11

The steps to disable main Flash security library are as follows:

® Check the OBF bit in the FLASH_STS register to confirm that there is no other ongoing
programming operation;

® Write the programmed password to the SLIB_PWD_CLR register;

® Perform a system reset, and then reload security library setting word;

® Read the SLIB_STSO register to verify the security library setting.

Compile and execute program in sLib

As aforementioned, program codes in the instruction security library (SLIB_INSTRUCTION) can be
fetched by MCU via I-Code bus but cannot be read via D-Code bus, which means that program
codes in SLIB_INSTRUCTION cannot read the data saved in the same SLIB_INSTRUCTION. For
example, literal pool, branch table or constant compiled from C program code in the
SLIB_INSTRUCTION cannot be read via D-Code bus.

Only instructions rather than data can be placed in the instruction security library. Therefore, when
compiling program codes to be placed in the instruction security library, the user must configure the
compiler to generate execute-only codes to avoid generating the above mentioned data.

Figure 2 and Figure 3 show the examples of literal pool and branch table.

The “switch()” is a jump instruction in C program, and the “sclk_source” variable is used to read the
CRM_CFG register. As shown in Figure 2, the compiled assembly code “LDR R7, [PC, #288]”
obtains the address of the CRM_CFG register in a PC (program counter) indirect addressing
manner, and the address of the CRM_CFG register is saved as a constant in the adjacent
instruction area (within the instruction security library); therefore, the data is read when the
“switch()” instruction is executed. An error will occur if there is such program code in the instruction
security library.

The example program in Section 3 introduces how to configure compiler settings to avoid error.

Figure 2. Literal pool example (1)

0x08004798 2800 MCVS r&, #0x00
79: sclk source = (crm_sclk type)CEM->cfg bit.sclksts;
80:
S0x0800479A 4F39 LDR r7, [pc, #228] ; @0x0BO04880
0xD800479C 687F LDR r7, [r7,$0x04]

Ox0B800479E F3CT0381 UBFX r3,r7,%2, %2
81: switch(sclk source)

oMo
[N

case CRM SCLEK HICK:

_] main.c |7 startup_at32f403a_407.s] at32f403a 407_clock.c || system_at32f403a 407.c]| at32f403a 407_am.c] at32f403a_407_gpio.c

T
78 % get sclk source */
> 79 || sclk source = (crm _sclk type)CRM->cfg bit. sclksts:
80
81 S}\-‘itn:h (sclk_source)
828 {
83 case CRM_SCLE_HICK:
84 if (((CRM->misc3 bit.hick to sclk) != RESET) && ((CRM->miscl bit.hickdis
85 svstem core_clock = HICK VALUE * 6;
86 else
87 svstem core_clock = HICK VALUE;
88 break;

10 Ver 2.0.0

<[

? AT32A403A Security Library Application Note

241

242

2023.7.11

Figure 3. Literal pool example (2)

137: system core_ clock = system core clock »»> div_walue;
Ox0800486E 4F0& LDE r7, [pc, $24] ; BOxOB0048BE
0x08004870 &B3F LDE r7, [x7,#0x00]
0x08004872 40F7 LSR5 r7,r7,r6
Ox08004874 FEDFCO10 LDR.W rl2, [pc, #16] ; B0Ox0B0048E88
Ox08004878 FECCT000 STR r7, [rl2, #0x00]

138: }

:bﬂxGBGG&BTC BDFO ECPE {rd4-r7,pc}
0x0800487E 0000 DCW 0x0000
Ox08004880 1000 DCW 0x1000
Ox08004882 4002 DCW 0x4002

Setting interrupt vector table as sLib area not allowed

The interrupt vector table contains entry point address of each interrupt handler, which is read by
MCU via D-Code bus. Generally, the interrupt vector table is located in the first sector (sector0,
starting address: 0x08000000). Therefore, the following rules must be followed when setting the
instruction security library:

® Do not configure the first sector of the main Flash memory as sLib area

® Program codes to be protection by security library cannot be placed in the first section of the
main Flash memory.

Correlation between sLib area and user code area

Program code (IP-code) protected by sLib area can call functions from the function library located
in user code area (outside the sLib area). In this case, these function addresses are contained in
the IP-Code, allowing PC (program counter) to jump to these functions when IP-Code is executed.
Once the sLib area is enabled, function address cannot be changed. At this point, addresses of
functions in the user code area must be fixed; otherwise, PC will jump to a wrong address and
cannot work properly. Therefore, when configuring the sLib area, all functions related to IP-Code
should be compiled into the sLib area. Figure 4 gives an example of the protected Function_A()
being called to Function_B() in the user code area.

11 Ver 2.0.0

<[

? AT32A403A Security Library Application Note

2023.7.11

Figure 4. Example of function in sLib area calling the function in user code area

User_Code_Start@

Function B fixed@ Function_B()

{
{
User_Code_End@

SLIB_Start@
Function_A()
{
Function _B();
}

SLIB_End@

User code area

SLIB area

In addition, the standard function library of C programming language is commonly used, such as

memset() and memcpy() functions. If both IP-Code and user area code call such functions, the

above mentioned error may occur.

Recommended solutions:

1) Compile into the sLib area (refer to Keil or IAR documents for details).

2) Do not use the standard function library of C programming language in IP-Code. If it is

necessary to use in IP-Code, functions to be used must be renamed. Figure 5 shows an

example of writing the my_memset() function to replace the original memset() in IP-Code.

12

Ver 2.0.0

,’I?I' ? AT32A403A Security Library Application Note

Figure 5. Example of user-defined function

voidk my_memset (void *s, int ¢, size t n):

void arm_fir_ init f£32(
arm_fir_ instance f32 * 5,
uintl6é_t numTaps,
float32_t * pCoeffs,
float32_t * pState,
{ uint32 t blockSize)
=
/% Assign filter taps */
S—>numTaps = numTaps;

/% Assign coefficient pointer */
S->pCoeffs = ploeffs;

S CTear STETE DUTTer and ThE S1Z¢ Of STATE DUffer 15 (DiorRsize — Tmumiaps — 1] */
my_memset (pState, 0, (numTaps + (blockSize — 1u)) * sizeof(float32_t)) |

/% Assign state pointer */
S->pState = pState;

void¥ mv_memset (void *s, int ¢, size t n)
=X
while (n>0)

%((char¥)s + n— —1) = (char)e:

return (s);

2023.7.11 13 Ver 2.0.0

<[

? AT32A403A Security Library Application Note

3.1
3.11

3.1.2

3.2

2023.7.11

Examples of sLib application

This section introduces examples of sLib application and related configurations.

Requirements
Hardware

® AT-START-A403A demo board with AT32A403AVGT?7 chip
® AT-Link emulator for debugging

Software

® Keil® pvision IDE (pvision V5.36.0.0 is used in this example) or IAR Embedded workbench
IDE (IAR V8.22.2 is used in this example)

® Artery ICP or ISP programming tool for enabling and disabling sLib

Overview

This application note provides two sample projects to demonstrate that software developers
develop IP-Code for end-user applications.

® Project_LO: Solution provider develops algorithm and compiles to sLib
® Project_L1: End users apply algorithm

The algorithm completed in Project_LO will be pre-downloaded and pre-burned to AT32A403A chip
and then configured as sLib-protected. In addition, the following settings are available for the end-
user applications.

® Main Flash memory mapping, indicating the area occupied by sLib and the area where users
can develop programs;

® Header file that contains algorithm function definitions, and functions that can be called by end
users;

® Symbol definition file, which contains the actual address of each IP-Code function, so that
these functions can be called properly by the end-user application.

Figure 6. Example of application process

Project_LO
Programs SLIB protected code

Project_L1
Programs End User Code
Using SLIB protected functions

End user application

14 Ver 2.0.0

1=l

? AT32A403A Security Library Application Note

3.3

2023.7.11

Software solution providers can refer to the Project_LO to develop algorithm code and refer to
Project_L1 for end-user application.

Figure 7. Example of application

Provide AT32A403A Provide pre burned
IP-CODE AT32A403A chip

chip . .
) =000 O — CTO S
Project_IO Project_I1

SLIB-protected code: FIR low-pass filter

This example uses FIR low-pass filter algorithm provided by CMSIS-DSP library as the sLib
protected IP-Code. For details about FIR low-pass filter algorithm, refer to CMSIS-DSP relevant
documents. This application note mainly introduces how to configure sLib to protect this algorithm
and how it is called by the end-user program code.

The low-pass filter input signal in this example is a combination of two sine waves at frequencies of
1 KHz and 15 KHz, while the low-pass filter cut-off frequency is about 6 KHz. A 15 KHz signal is
filtered through the low-pass filter and outputs 1 KHz sine wave. Figure 8 shows the FIR low-pass
filter functions.

Figure 8. FIR low-pass filter

Input signal Output signal
1 1
L AU SO R I 0E
= : : = |
2 H 5 = I : : B d
L I S s - FIR Low Pass Filter - 0 : ' : ;
o a J“,“ b i
i s 1 14 2 5 i 04 1 5 2 15
=10 w1t

CMSIS DSP library functions and files to be used are:

® arm_fir_init_f32()

This function is used for initialization of filter, and it is included in “arm_fir_init_f32.c” file.
® arm_fir_f32()

=This function is the main part of filter algorithm, and it is included in “arm_fir_f32.c” file.
® FIR lowpass filter()

It is a FIR low-pass filter global function written by using the above two functions, and is included in
“fir_filter.c” file.

® fir_coefficient.c

This C file contains coefficients (read-only constants) used by FIR filter functions, and these
coefficients are placed in the data security library in the example.

In this example, embedded FPU and DSP are used for signal processing and floating-point
operations to realize accurate computation and output correct signals.

15 Ver 2.0.0

_\)r ? AT32A403A Security Library Application Note

3.4 Project_LO: Example for solution providers

The following projects are completed in this level:

Compile the algorithm-related functions to execute-only code;

Place the algorithm code to the main Flash memory sector2;

Place the filter function coefficients to the main Flash memory sector 4;
Execute FIR_lowpass_filter() in the main program to verify its correctness;

If it is verified correct, configure sector 2/3 as the instruction security library and sector 4/5 as
the data security library, by calling the slib_enable() function in the main program or by using
Artery ICP Programmer (recommended);

Generate the header file and symbol definition files that are used by end-user program to call
low-pass filter functions.

3.4.1 Generate execute-only code

Each toolchain has specific setting options to prevent the compiler generating literal pools and
branch table that can read data while executing instructions, such as “LDR Rn, [PC, #offset]".
Section 2.4 lists examples of literal pool and branch table.

For example, Keil® pvision has Execute-only Code option, which can be set as follows:

Keil® pvision: Execute-only Code option

Configure as follows:

Select C file group or individual C file (in this example, C files to be protected are placed
“infir_filter”).

Right click and select the corresponding files (for example, the Option for File ‘arm_fir_f32.c),
as shown in Figure 9.

Figure 9. Enter Option interface in Keil

=L fir_filter
@ arm_fir f32.c -
$j arm fir init F32.c Eﬁ\ Dptions for File "arm_fir_f32.c'... Alt+F7
_’| fir_coefficient.c Remove File "arm_fir_f32.c

%] fir filter.c dh Manage Project Items...

2023.7.11

Tick “Execute-only Code” in the C/C++ and the “--execute_only” instruction is added to the
compiler control string, as shown in Figure 10.

16 Ver 2.0.0

,’I?I' ? AT32A403A Security Library Application Note

Figure 10. Tick Execute-only Code in Keil

Froperties C/CH |
— Prep Symbols
Define: I
Undefine: I
— Language / Code Generation
¥ Execute-orly Code | [7 Stict ANSI C Wamings:
Optimization: I(defaulb ;I [¥ Enum Container always int INl Wamings jv
[¥ Optimize for Time [¥ Plain Charis Signed [¥ Thumb Mode
[Split Load and Store Multiple [¥ Read-Only Position Independent [¥ No Auto Includes
[One ELF Section per Function [¥ Read-Wite Posttion Independert [C93 Mode
Include
Paths I B
Misc I
Controls
Compil —execute onh'd —cpu Cortesc-M4 fp -D__ MICROLIB -g 00 —apcs=interworke —split_sections -| .\ N\, =~
control~f+ Ninc - LA Nibrares\cmsis'\emd\core _support -| .4 Nibrariescmsis
string -
[1):4 I Cancel Defanlts Help

® The rm_fir_f32.c, arm_fir_init_f32.c and fir_filter.c are in the SLIB_INSTRUCTION area, and
these files need to be configured as generating execute-only code.

IA: No data read in code memory

Configure as follows:

® Select the corresponding file in the fir_filter group, and right click to select Option.

Figure 11. Enter Option interface in IAR

= o fir_filter

| arm_fir_fid.c —

| arrm_fir_init_{32.0 Options...
| [¢] fir_coefficient.c Mak

| E fir_filter.c AR

® Enter "C/C++" interface and tick “Override inherited settings” and “No data read in code

memory”, as shown in Figure 12.

2023.7.11 17

Ver 2.0.0

/l?l_ ? AT32A403A Security Library Application Note

Figure 12. Set C/C++ Compiler in IAR

[Exchude from build

Categany: | Oweride inherited settings | Factary Settings

Static Analysis
Runtime Chedking

Custom Build Freprocessor | Diagnostics | MISEA-C: 2004
MISRA-C:1998 | Encodings | Extra Optiens

Language 1 | Language 2 | Code |Uptimizations | Output IList

Frocessor mode

Arm
(@ Thumb

Fozition-independence

utode and read-only data [(ropi)i
Dﬁeadt”write data (rwpil
Ho dymamic readfwrite initializati

Ho data reads in code memory

0K] ’ Cancel

® The arm_fir_f32.c, arm_fir_init_f32.c and fir_filter.c are in the SLIB_INSTRUCTION area, and
these files need to be configured as generating execute-only code.

3.4.2 Compile security library address

As aforementioned, the first sector (sector0) of the main Flash memory is used to store interrupt
vector table. Therefore, the security library is set from sector2 in this example, with sector 2/3 as
the instruction security library and sector 4/5 as the data security library. Figure 13 shows the main
Flash memory mapping and RAM partition. The main purpose of RAM partitioning is to avoid the
same RAM being used by sLib-protected code and end user code.

2023.7.11 18 Ver 2.0.0

?r ? AT32A403A Security Library Application Note

2023.7.11

Figure 13. Main Flash memory mapping and RAM partition

0x20000000 0x08000000
Vector table
User RAM User code
Ox08000FFF
0x20016FFF 0x08001000
0x20017000 SLIB_INSTRUCTION
SLIB used RAM -
Ox08001FFF
0x08002000
SLIB_DATA
0x08002FFF
0x08003000
User code
OXO80FFFFF

Keil® pvision: scatter file
Configure as follows:

® Click Project - Options for Target->Linker, untick “Use memory layout from Target Dialog”
and click “Edit” to open and modify slib-w-xo.sct file, as shown below.

Figure 14. Set Linker in Keil

kA Options for Target "at_start_a403a’ X
]Jevice] Target] Uutput] Listing} User I C/C++ I hsm Linker]Debug] Utilities I
| [~ Use Memory Layout from Target Dialog %/0 Base:
[~ Make RW Sections Position Independent R/0 Base: |(x08000000
[~ Make RO Sections Position Independent RAW Base |0x20000000
[~ Dont Search Standard Libraries
: PP,
[v Report ‘might fail' Conditions as Errars bV |
Scat: {
catter | g - :
e | slib-wxo sct | J E Edit...
Misc —symdefs=fir_fiter_symbol txt
controls
Linker |-cpu Cortex-M4fp.sp .o A
control |Hibrary_type=microlib —strict —scatter " ‘slib-w-xo sct”
string W
0K | | Cancel | | Defaults Help

Open scatter file, load the object file of the code to be placed in SLIB_INSTRUCTION area to
the “LR_SLIB_INSTRUCTION (a dedicated loading area that starts from sector2 and occupies
two sectors) and modify the label to “execute-only (+X0O)”. Place the area occupied by the
SLIB_Data to a dedicated loading area named “LR_SLIB_DATA” to avoid the compiler
compiling other non-IP-Code functions to the SLIB area. The RW_IRAM2 assigns the region
from 0x20017000 to 0x20017FFF to algorithm functions to avoid the same RAM region being

19 Ver 2.0.0

ll?l_ ? AT32A403A Security Library Application Note

used by end-user project, causing fault or error in program execution process.

Figure 15. Modify scatter file in Keil

LR_IROM1 0x08000000 0x001000 { ; load region size_region
ER_IROM1 0x08000000 0x001000 { : load address = execution address
o (RESET, +First)
#(InRoot$$Sections)
.ANY (+RO)

RW_IRAM1 0x20000000 0x00017000 { ; user RV data
JANY (+RW +ZI)

RW_IRAM2 0x20017000 0x00001000 { . RAM used for slib code
fir filter.o (+RW +ZI)

}

LR_SLIB_INSTRUCTION 0x08001000 0x00001000 { : zlib instruction area
ER_SLIBINSTRUCTION 0x08001000 0x00001000 { : load address = execution address
arm_fir_init_£32.o0 (+X0)
arm fir £32.0 (+X0)
fir_filter.o (+X0)

}

LR_SLIB_DATA 0x(08002000 0x00001000 { ; sLib data area
ER_SLIB_DATA 0x08002000 0=00001000 {
}fir_coefficient.o (+R0)

}

LR_IROM2 0x08003000 0x000FD0O00 { - user code area
ER_IROM2 0x08003000 0x000FD000 { : load address = execution address
.ANY (+RO)

}
}

In addition to modifying the scatter file, for the RAM used by IP-Code, users can also use the
Keil “__attribute__ ((at(address)))” descriptor to load variables to 0x20017000, as shown in
Figure 16.

Figure 16. Modify SLIB RAM address in Keil

61
62
63
64
65

#if defined (__ICCARM__)

static float32_ t firStateF32[BLOCK_SIZE + NUM_TAPS - 1] @ 0x20017000 ;
Zelif defined (__CC_ARM)
static float32_t firStateF32[BLOCK_SIZE + NUM_TAPS - 11| __attribute_ ((at(0x20017000))) ;
Hendif

The start address of data security library is sector 4 (0x08002000). To compile the constants
used by FIR low-pass filter functions to this address, users can modify the scatter file as
aforementioned, or use Keil “__attribute__ ((at(address)))” descriptor to load the constants to a
fixed address, as shown in Figure 17.

Figure 17. Modify SLIB constant address in KEIL

a7
58
59
60
61

63
64

66

#if defined (__ICCARM__)

const float32 t firCoeffs32[NUM _TAPS] @ 0x08002000 ={

Zelif defined (__CC_ARM)

const float32_t firCoeffs32[NUM_TAPS] |__attribute__ ((at(0x08002000))) = {

Hendif
—-0.0018225230f, -0.0015879294f, +0.0000000000f, +0.0036977508f, +0.0080754303f, +0.00
—0. 0341458607f, -0.0333591565f, +0.0000000000f, +0.0676308395f, +0.1522061835f, +0.22
+0. 1522061835f, +0.0676308395f, +0.0000000000f, -0.0333591565f, -0.0341458607f, -0.01
+0. 0080754303f, +0.0036977508f, +0.0000000000f, -0.0015879294f, -0.0018225230f

2023.7.11

20 Ver 2.0.0

?r ? AT32A403A Security Library Application Note

IAR: ICF file

Configure as follows:

® Open the icf file in “\project_IOMIAR_V8.2V", and add three SLIB loading areas as shown in
Figure 18. The SLIB_RAM region reserves the corresponding RAM (0x20017000 to
0x20017FFF) for the algorithm functions.

Figure 18. SLIB address definition in icf file

/% SLIB INSTRUCTION area #*/

define svmbol _ ICFEDIT region SLIB_INSTRUCTION start = 0x08001000;
define svmbol _ ICFEDIT region_ SLIB_INSTRUCTION end = 0x08001FFF;
/% SLIB DATA area */

define svmbol _ ICFEDIT region SLIB DATA start = 0x08002000;

define svmbol _ ICFEDIT region SLIB DATA end = 0x08002FFF;

define svmbol _ ICFEDIT region RAM start = 0x20000000;

define svmbol _ ICFEDIT region RAM end = 0x20017FFF;

/% SLIB RAM region #/

define svmbol _ ICFEDIT region SLIB RAM start = 0x20017000;

define symbol _ ICFEDIT region SLIB RAM end = = 0x20017FFF;

® In the icf file, the area occupied by SLIB is reserved to avoid the compiler compiling other non-
IP-Code functions to the SLIB area, and the RAM region used by IP-Code is also reserved.

Figure 19. Address assignment in icf file

* Reserved 0x08001000 ~ 0x08002FFF as SLIB area #

define region ROM_region = mem:[from __ ICFEDIT region_ROM_start__ to __ ICFEDIT_region_ROM_end_]
—mem: [from _ ICFEDIT region_SLIB_INSTRUCTION start__ to __ ICFEDIT_ region_ SLIB_INSTRUCTION end]
—mem: [from __ICFEDIT_region_SLIB_DATA start__ to _ ICFEDIT region SLIB_DATA end_] :

define region SLIB_INSTRUCTION region = mem:[from __ ICFEDIT region_SLIB_INSTRUCTION start__ to _ ICFEDIT region_ SLIB_INSTRUCTION end_]:
define region SLIB _DATA region = mem:[from _ ICFEDIT region_SLIB_DATA start__ to _ ICFEDIT region_SLIB_DATA end_ 1:
* Reserved 0x20017000 ~ 0x200L7FFF as RAM used for SLIB code #

define region RAM_region = mem:[from _ ICFEDIT region_RAM_start_ to __ ICFEDIT_region_RAM end_]
- mem: [from __ICFEDIT region_ SLIB_RAM start__ to _ ICFEDIT region SLIB_RAM end_]:
define region SLIB_RAM_region = mem: [from __ ICFEDIT region_ SLIB_RAM_start__ to __ ICFEDIT region_SLIB_RAM end_ 1:

® [For the RAM used by IP-Code, users can use the IAR @descriptor to load variables to a fixed
(0x20017000) or modify the icf file, as shown in Figure 20.

Figure 20. Modify IP-Code RAM in icf file

place in RAM region { readwrite,
block CSTACE, block HEAP };

/* Place slib used sram */
place in SLIB RAM region { readwrite object fir filter.o }:

® The start address of data security library is sector 4 (0x08002000). To compile constants used
by FIR low-pass filter functions to this address, users can modify the icf file as mentioned
above or use the IAR @ descriptor to place these constants to a fixed address, as shown in
Figure 21.

2023.7.11 21 Ver 2.0.0

:'=/| ?I_

? AT32A403A Security Library Application Note

343

2023.7.11

Figure 21. Modify SLIB used constant address in IAR

J#if defined (_ ICCARM__)
#211f defined { _ CC_ARM)

#endif
-0.0018Z25230€f, -0.001587%Z224fF,
-0.0341458607f, -0.03335%1565f,
+0.1522061835€, +0.06763083835f,
+0.0080754303f, +0.00369775081f,

Jeonst fleat32 t firCoeffs3Z[NUM _TAPSF]

@ 0x08002000 ={

+00.
+00.
+0
+0.

goooooooooE, +0

L 00369775081,
gooooooooooE, +0.
.gooooooooof, -0.
gooooooooof, -0.

0676308395,
0333581565F,
00158792941,

Jeonst fleat32 t firCoeffs3Z2[NUM_TAPS] attribute ({at {(0=08002000)))

+0

-0

=

. 0080754303,
+0.

15220681835€F,

.03414583607F,
-0.

0018225230F

Enable sLib protection

There are two methods to enable sLib protection:

(1) User Artery ICP Programmer (recommended)
It is recommended to use Artery ICP Programmer as follows:

® Connect AT-Link emulator to AT-START-A403A board and then power on;

® Open ICP Programmer, select AT-Link for connection, and add the HEX or BIN file generated

by Project_LO, as shown in Figure 22.

22

Ver 2.0.0

,’I?I' ? AT32A403A Security Library Application Note

Figure 22. Configure ICP Programmer

& Artery ICP Programmer V3.0.10 - x
File | J-Link settings | AT-Link settings Target Language Help
Disconne |PartNumber: AT32A403AVGT7 FlashSize: 1024KB | /] ?r ?
ct r
AT-Link Plus FW:V2.2.8 AIN: A6200588A8117C11 +
AT-Link SN: 697A59030040947413078D07 USB,
ATLink ~ § B ﬂ- 4*‘1’ s,
Extra configuration
SPIM Config ASPI Config

Memory read settings

Address 0x (08000000 Read size (x [000003D0 Data bits | § hits ~ Read

File info

Mo. File name File Size Address range(0x) Add
at32a403a_project 10.hex 08000000-080003CF,08001000-08001117,03(| Ry

Flash CRC File CRLC verify DownlLoad

Flashinfo File:at3Zad03a_project |0 hex
Address range:[0x08000000 0x080003CF] Address range:[0x08001000 0x08001117] Address range:[0x02002000 0x0200

Address |] 1 2 3 4] L] 7 8 4l A B = D E F AL~
43 |18 |00 |20 |01 |30 |00 (08 [1B |3& |00 |08 |13 |38 |00 |08 |HO
Ox03000010 17 |36 |00 |08 |F3 |35 |00 (08 |95 |35 (000 (08 |00 (OO (OO |00 |O6
(x03000020 g0 |00 |00 |00 |00 (OO0 (OO (0O (OO (OO0 (OO (OO |1F |38 |00 (03 |...
(=08000030 F7 |35 |00 |08 |00 (OO (OO (000 (1D |38 (0O (08 |21 |38 |00 (08 |7
(x08000040 18 |30 |00 (08 |1B |30 |00 (02 |1B |30 |00 (08 |18 |30 |00 |08 |00
v
£ >
~

11:38:14 : Part Number: AT32A4034VGTT Flash5ize: 1024KB
11:35:14 ; Target device connection successfully!

11:38:25 : [D:\project\BSPWAT32A4034_ Firmware_Library V2 xx\clean. bat] open failed

Current Time: 2023/7/12 11:36:59 All Rights resernved by Artery Technology Co.Ltd

® Click “Download” and the “Download Form” pops up, which shows sLib status and relevant
parameters. Set sector 2 as the start sector, sector 4 as the data start sector, and sector 5 as
the end sector. Set the enable password as “0x55665566” (user-defined) and tick “Enable
sLib”; then click “Start Download” to complete programming and enable sLib successfully, as
shown in Figure 23.

2023.7.11 23 Ver 2.0.0

ART

5

AT32A403A Security Library Application Note

3.44

2023.7.11

Figure 23. Set parameters in Download Form

[V Download Form
N — -

= -

cLib status

sLib status: Disable

Enable password Ox 33663366

Disable password Ox

Disable sLib

Remaining usage times: 246

Main Flash

Start sector [Sector 2--0x08001000

DATA start sector [Sedor 4--0x08002000

[seaor 5--0x08002800

[7] Write user system data

[7] Disable FAP before download

Start Download

End sector
. 0
Extra options
[Erase the sectors of file size VI [7] Disable sLib before download
Verify Enable sLib
[] Jump to the user program [7] Enable FAP after download
[7] Write software serial number(SN)
Il 08010000 [7] Button free mode
i 00000001
00000001

For details about ICP Programmer, refer to ICP Programmer User Manual.

(2) Use slib_enable() in main.c

After the slib_enable() function is verified correct by low-pass filter function and then executed, the
sLib protection can be enabled. To execute this function, enable the “#define

USE_SLIB_FUNCTION” in main.c.

Project_LO execution process

In this example, FIR low-pass filter calculates the input signal (testinput_f32_1kHz_15kHz) mixed
with 1 KHz and 15 KHz sine waves, and the output 1 KHz sine wave data is saved in testOutput,
which will be compared with the data calculated by MATLAB and saved in refOutput. If the error
value is smaller than the expected (SNR larger than the preset threshold), the on-board green LED
blinks; otherwise, the on-board red LED blinks. Figure 24 shows the Project_LO execution process.

24

Ver 2.0.0

:'=/| ?I_

5

AT32A403A Security Library Application

Note

Figure 24. Project_LO execution process

~(

Start

)

Execute
system rest to activate
SLIB

T

l

LED3 toggle
continuously

User button
Pressed ?

yes

Yes

SLIB
Operate
uccessfully?

\ 4
Green LED4 on Execute
FIR filter
3 seconds
test

Check
FIR test
result

Success

SLIB
already
enabled?

Enable SLIB

Yes

\4

Green LED4 toggle
in infinite loop

Go through the following steps to execute this example program:

(1) Use Keil® pvision to open the Project_LO under
“\utilities\at32a403a_slib_demo\project_I0\mdk_v5\”, and then compile.

Before downloading the code, check whether the chip on AT-START-A403A board is sLib-
protected or write/read-protected (FAP/EPP). If it is protected, use ICP programmer to disable
protection and then download the code.

()

®3)

After successful download, start to execute the code, and the on-board LED3 keeps blinking
rapidly.

(4)
(5)

2023.7.11

Press the on-board USER button to perform low-pass filter computation.

Compare the computation result. If it is correct, the green LED4 keeps blinking; otherwise, the

25 Ver 2.0.0

?r ? AT32A403A Security Library Application Note

3.4.5

2023.7.11

(6)

read LED2 keeps blinking.

After obtaining the correct result, if the USE_SLIB_FUNCTION in main.c is defined and the
SLIB is not enabled, the slib_enable() function will be executed to set SLIB. If SLIB setting
fails, the red LED2 will be always ON; if SLIB setting succeeds, the green LED4 will be ON for
about three seconds and then perform system reset to enable SLIB; then, the program jumps
to step (3).

Generate header file and symbol definition file

The header file and symbol definition file are used when the Project_L1 calls FIR low-pass filter
functions, which is the fir_filter.h file in main.c in this example.

The generation of symbol definition file is related to the specific toolchain being used.

Use Keil® pvision to generate symbol definition file

Configure as follows:

® Enter Options for Target - Linker interface.
® Add “--symdefs=fir_filter_symbol.txt” command in the “Misc controls”, as shown in Figure 25.
Figure 25. Set Misc controls in Keil
KA Options for Target "at_start_a403a’ X
Tevice] Target] Output] Listing] User] C/C+] hsm Linker]Debug] Utilities]
™ Use Memory Layout from Target Dialog ¥/0 Base: ’7
[Make RW Sections Position Independent R/O Base: ’W
™ Make RO Sections Position Independent BT ’W
™ Dont Search Standard Libraries -
¥ Report ‘might fail' Conditions as Emors el |
Scai'_:_t“eer |.'-s|ibw10.sd j B Edit...
|
Mk; —symdefs=fir_fitter_symbol tx
controls
Linker |-cpu Cornex-M4fp.sp "o A
control |ibrary_type=microlib -strict —scatter " \slib-w-xo sct"
string (")
0K | | Cancel | | Defaults Help
® Compile the whole project, and then a “fir_filter_symbol.txt” symbol definition file is generated
under “project_l0\mdk_v5\Objects”.
® This symbol definition file contains all symbol definitions of the project, and it needs to be

modified to only remain the definitions of low-pass filter functions to be called by end users.
The modified fir_filter_symbol.txt is shown in Figure 26.

Figure 26. Modified fir_filter_symbol.txt

0x08001001 T FIR lowpass filter

26 Ver 2.0.0

’I?F ? AT32A403A Security Library Application Note

Use IAR to generate symbol definition file
Configure as follows:
® Select Project->Option—->Build Actions

Figure 27. Set Build Actions in IAR

: .

Categony:

General Options
Static Analysis

Runtime Checking
CfC++ Compiler Build Actions Configuration

Assembler Pre-build command line:
Output Converter D

Custom Build
Linker [$TDDLIGT_DIR$\bin\i symexport. exe ——edit “$FREOT_DIEf'=t. D |
Debugger
Simulator
CADI
CMSIS DAP
GDB Server
I4et/TTAGIet
J-link{1-Trace
TI Stellaris
Mu-Link
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET
TIXD5

[1]3] [Canecel

® Input the following commands to the Post-build command line:

$TOOLKIT_DIRS$\bin\isymexport.exe --edit "$PROJ_DIRS$\steering_file.txt"
"$TARGET_PATHS$" "$PROJ_DIRS$\fir_filter_symbol.0"

® The fir_filter_symbol.o is the symbol definition file to be generated, and the steering_file.txt is
saved under “project_IO\iar_v8.2”, which is used to select function symbols to be generated.
Users can manually edit the contents called by sLib. As shown in Figure 28, the “show” is the
command for function selection.

Figure 28. Edit steering_file.txt content

show FIR lowpass filter

3.5 Project L1: example for end users

Project L1 uses the FIR low-pass filter function that is debugged in Project_LO, programmed to
AT32A403A MCU main Flash memory and configured as SLIB-protected. According to the header
file, symbol definition file and the main Flash memory mapping of Project_LO, end users can
complete the followings for Project L1:

® Create an application project;
® Add the header file and symbol definition file provided by Project_LO to the project;

® Call the FIR low-pass filter functions;

2023.7.11 27 Ver 2.0.0

<[

? AT32A403A Security Library Application Note

3.5.1

2023.7.11

® Develop and debug user’s program.

Note:

Project_L1 must use the same toolchain and the same version of the compiler as those of
Project_LO; otherwise, incompatibility problem may occur and the code provided by Project_LO
cannot be used properly. For example, Project_LO uses Keil® pvision V5.36.0.0; therefore,
Project_L1 need to use the same version

Create user application project

The security library enabled in Project_LO occupies some specific main Flash memory sectors;
therefore, the address for Project_L1 code storage should be compiled according to the main Flash
memory mapping of Project_LO. In the main Flash memory, sector 2 to sector 5 are occupied by
security library, which should be isolated by using the linker control file to avoid code being
compiled to this region.

Keil®pvision: scatter file

Refer to the end_user_code.sct under “project_|1\mdk_v5\’, and divide the main Flash memory into
two regions, and the middle part is the sLib-protected area. In addition, the area behind
0x20017000 in RAM should be reserved, as shown in Figure 29.

Figure 29. Modified scatter file

LE_IROM1 0x08000000 Ox00001000 . load region =ize_region
EF_IROM1 0x08000000 0x00001000 { : load addresz = execution address
#,0 (RESET, 4First)
* (InRoct$fSections)
ANV (+RO)

1

EW_IRAMI 0x20000000 000017000 { ; RYW data
CANT (+EW +IT0

1

o Dx20017000 7 Ox20017FFF RaM reszerved for SLIE code

; 0x08001000 7 Ox0B8002FFF is SLIE area

LE_TROMZ 0x08003000 Ox000FDOO0 ; load region =zize_region
EE_IROMZ 0x08003000 0x000FDOOD { ; load address = execution address
. LMY (+R0)

1
h

IAR: ICF file

Refer to the enduser.icf file under “project_I1\iar_V8.2\", as shown in Figure 30.

Figure 30. Modified icf file

/* Reserved SLIBE area */
define region ROM region = mem: [from __ ICFEDIT region ROM start to _ ICFEDIT region ROM end_]
-mem: [from _ ICFEDIT region_ SLIB_start_ to _ ICFEDIT region SLIB end 7

define region RAM region = mem: [from __ ICFEDIT region RAM start to _ ICFEDIT region RAEM end]
— mem: [from _ ICFEDIT region SLIB RAM start to _ ICFEDIT region SLIB_RAM end]
I 1 | [S) . O
28 Ver 2.0.0

1?[? AT32A403A Security Library Application Note

3.5.2 Add symbol definition file to project

The symbol definition file fir_filter_symbol.txt generated in Project LO must be added to Project L1,
so that it can be correctly compiled and linked to the sLib-protected area code.

Add symbol definition file in Keil® pvision

Add fir_filter_symbol.txt to the project, as shown in Figure 31.

Figure 31. Add symbol definition file Keil

FrOjecr ®
=% Project: project_I1
- at_start_adl3a
L user
{d bsp
L firmware
Ll cmsis

= =R o 1
i v 0 Ry =)

_] fir_filter_symbol.tct
L1 readme

Add this file to fir_filter, and then modify its file type from “text” to “Object’, as shown in Figure 32.

Figure 32. Modify symbol definition file as “Object file”

K Options for File 'fir_filter_symbol.txt" @

¥ Include in Targst Build

=
last change: |Fn May 21 11:14:16 2021 l—
=
Stop on Exit Code: |Hot specified J I
Custom Arguments: |
Memoary Assignment:
Code / Const: |<dsfautt> =
Zero Initialized Data: |=dafault> ﬂ
Other Data: [<defauit> 2|
0K | Cancel Defaults Help

Add symbol definition file in IAR
Add the fir_filter_symbol.o (Object) to fir_filter, as shown in Figure 33.

2023.7.11 29 Ver 2.0.0

?r ? AT32A403A Security Library Application Note

Figure 33. Add symbol definition file in IAR

[=-1 Tl -
= @ project_I1 - at_start_f... +
M bsp .
B cmisis ™
=1 -fir_FiIh:.r

LE [fir_filter_symbal.o
W fiTrraTe ™
B readme
M user ™
B Output

3.5.3 Call functions in sLib-protected area
After the filter.h header file is referred in main.c and the symbol definition file is added to the
project, the low-pass filter function in the protection area can be called, as shown below:
FIR_lowpass_filter(inputF32, outputF32, TEST_LENGTH_SAMPLES);
Where:
® inputF32: pointer to input signal data table
® outputF32: pointer to output signal data table
® TEST_LENGTH_SAMPLES: the number of signal samples to be processed

3.5.4 Project_L1 execution process

Figure 34 shows the execution process of Project L1:
® Start execution and LED3 keeps blinking;
® Press the USER button on AT-START board, and the FIR_lowpass_filter() starts computing;

® |f the result is correct, the green LED4 will keep blinking; otherwise, the red LED2 will keep
blinking.

2023.7.11 30 Ver 2.0.0

AR

AT32A403A Security Library Application Note

Figure 34. Project_L1 execution process

Green LED4 toggle
in infinite loop

L)
i

LED3 toggle
continuously

User button
Pressed ?

yes

4

Execute
FIR filter
test

Check
FIR test
result

<@—Success

3.5.5 SLIB protection in debug mode

Development tools are used by end users to debug codes when developing applications. This
section takes Keil® pvision as an example to introduce how to protect codes in the SLIB-protected
area from being read as data in debug mode.

® Open Project_L1 project and compile;

® Click “Start/Stop Debug Session” to enter debug mode;

® Right click in the “Disassembly” interface and select "Show Disassembly at Address”, as
shown in Figure 35.

2023.7.11

31 Ver 2.0.0

AT32A403A Security Library Application Note

Figure 35. Set Show Disassembly at Address

|- | | = = | L=y mirstatersz v D M| W OV LF @R [[ET)
=lE)s) - R-E- D E %
@ Disassembly LN -]
+|/[oxos003ESZ 270 BX ir ~
b 94: AT32_Foard Init():
as:
96: /% Configure Flash to generate ||V | Mixed Mode error occur
E0x08003E54 2504 cHp r0, #0 Assembly Mad
0x08003ES6 D106 BIE 0x080 BELEJORE
37: Inshle_Flash_INTi): Address Range »
96:
5g: Show Disassembly at Address..
100: /7 Wait for KEY button to be p S FOTET o
O%0B003ESS 4904 LDR r1, [p aunto cursor | nerin
0x0B003ESA 6809 LDE I 1) oo e =
E;: :1h11E (BT32_BUTTON State (BUTTGN |\ o o o kpoint
0x0SO03ESC FOS10104 ORRS r1,r1 O Enable/Disable Breakpoint ctri=F9
0x0B003E60 4208 LDR rz, [p
1| oxosoosEsz 011 STR r1, [BRI P b
104: Delay ws (300} Enable/Disable Tracepoint
108: 3
106: Inline Assembly...
107: /% Turn OfZ LEDI */ Load Hex or Object file...
0x08003E64 EOOS B 0x080
0x0B003E66 4807 LDR 1, [p T I T s o
7l Execution Profiling » >
] mainc = insert/Remove Bookmark Chrl=F2 v B
2 H} GallStadk (33 copy Cirl=C B
CLib ¥1.x.:0\4UEilities\\AT32F4034_8 | pono TocsteniV Tipe

® Enter the address “0x08001000” of SLIB_INSTRUCTION start sector 2.

Figure 36. Set Show Code at Address

Show Code at Address >

Addresz:
|nxuanm ond

GoTo |

® As shown in Figure 37, codes from 0x08001000 are all OxFFFFFFFF.

Figure 37. View codes

mifNCIE == R ER-Ry R
| Disassembly L x |
TED { -
i uint32_t i
0x08001000 FFFFFFFF DCD OxFFFFFFFF
0x08001004 FFFFFFFF DCD OxFFFFFFFF
0x08001005 FFFFFFFF DCD OxFFFFFFFF
79: uintiz_t numElocks = testlengthsamples,/BLOCK_SIZE;
S0: arm fir instance £3z 3
g1
82
B3 /% Call FIR init function to initialize the instance structure. */
0x0800100C FFFFFFFF DCD OxFFFFFFFF
S4: arm_fir_init_f£3Z (&%, NUM TAP3, (float3Z_t *)&firCoeffs3iz[0], <£firdtaceF32[0], block3ize
85: i
86: ** Call the FIR process function for every blockSize samples
87: = =
0x08001010 FFFFFFFF DCD OxFFFFFFFF
0x08001014 FFFFFFFF DCD OxFFFFFFFF
0x08001015 FFFFFFFF DCD OxFFFFFFFF
0x0800101C FFFFFFFF DCD OxFFFFFFFF
0x0800102Z0 FFFFFFFF DCD OxFFFFFFFF
0x08001024 FFFFFFFF DCD OxFFFFFFFF
0x08001025 FFFFFFFF DCD OxFFFFFFFF
0x0800102C FFFFFFFF DCD OxFFFFFFFF
0x08001030 FFFFFFFF DCD OxFFFFFFFF
J 0x08001034 FFFFFFFF DCD OxFFFFFFFF hd
R4 >

® Similarly, enter address “0x08001000” in “Memory”, and codes are all OxFF, as shown in
Figure 38.

2023.7.11 32

Ver 2.0.0

1?[? AT32A403A Security Library Application Note

Figure 38. View codes in Memory

Memory 1

Address: |0=08007000

0x08001000: FF
0x08001013: FF
0x08001026: FF
0x08001039: FF
0x0800104C: FF
0x0800105F: FF
0x08001072: FF

\|0x08001085: FF
OxNENN1N9&5: FFE
@ Call Stack = Locals

® |n the “Memory” window, enter the address “0x08002000” of the SLIB_DATA start sector 4.
This region is allowed to be read through D-Code bus, so that original values can be found, as
shown in Figure 39.

Figure 39. View SLIB_DATA start sector in Memory
Memory 1 LA > |

Addhess: [[+0B002000 D 2

0x08002000: B9
0x08002013: 3C
0x08002026: 08
0x08002039: 41
0x0800204C: 9C
0x0800205F: 3C
0x08002072: EE
0x08002085: FF
N¥NANN2N98: FF

&0 Call Stack = Local

00 00 0O F?7 55 72 3B CF 4E 04
SE §5 BE BEC 88 DC OF ED 9C A3
3D FO DE 1B 3E 5F 46 64 3E 06
1E 3E 0O& B2 BA 3D 00 0O 0O OO
§5 SE BC 00 00 00 50 58 CZ OB
00 00 00 00 12 Z2 DO Bh B9 E1
FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF
FF_FF_FF _FF _FF _FF FF FF FF FF__ ¥

® Double click to modify the value of 0x08002000 in the code, and a warning message will be
issued by setting EPPERR=1 in the FLASH_STS register, indicating the protection is enabled.

Figure 40. SLIB write test

Property Value
PSR 0x00000030 =

UMNLOCK

UsD_UNLOCK

E--5T5
ODF
EPPERR
PRGMERR
OBF

e —— - S . .. S LIl

2023.7.11 33 Ver 2.0.0

’I?F ? AT32A403A Security Library Application Note

® In case of enable erase/program protection error interrupt, continuing execution will enter the
interrupt routine.

Figure 41. Write protection error interrupt

115 void FLASH IRQHandler (void)
116 2 {
> 117 | irf (flash flag get (FLASH EPPERR_FLAG))
1185 {
119 flash flag clear (FLASH EPPERR FLAG) :
120 delav_ms (500) :
121 |}
122 |}

2023.7.11 34 Ver 2.0.0

?r ? AT32A403A Security Library Application Note

4 Integrate codes and download

After codes of the solution provider and end user are configured, download to the same MCU on
the premise of guaranteeing code security. Project_L0O and Project_L1 are used to introduce two
downloading methods for reference.

This operation involves offline downloading mode of AT-Link. For details, refer to operation
manuals of ICP and AT-Link.

41 Program codes separately

Firstly, the solution provider programs SLIB codes to MCU; then, the end user programs application
codes to MCU. The process is as follows:

(1) Method A: The solution provider uses ICP tool to save the SLIB code in the compiled project
as BIN or HEX file: download the complete project to MCU (do not configure SLIB and FAP),
read the corresponding SLIB codes (0x08001000~0x08002FFF) by using the memory access
function; then click “File-Save Flash data as” to save codes as BIN or HEX file. In this
example, it is named “slib.bin”, as shown in Figure 42.

Figure 42. Save SLIB codes

[E Artery ICP Programmer V3.0.10 — *
File | J-Link settings AT-Link settings Target Language Help
Savefile as ..
T32A403AVGT7 FlashsSize: 1024KB | ? r ?
| savefash dataas..
:V2.2.8 AIN: AG200588A8117C11
Take encryption Tl) TA59030040947413078D0T (WinUSB) i&- 4-% 77
L]
Exit

Extra configuration
SPIM Config

Memory read settings

Addresg 0x |08001000 Read size (yx |2000 Data bits | § bits ~ | Read |

File info
Mo. File name File Size Address range(0x) Add
1 at32a403a_project_I10.hex 8024 08000000-080003CF,08001000-08001117,08(| palete
< >

Flash CRC File CRC verify DownlLoad

Flashinfo File:at32a403a_project 10 hex
Address range:[0x08001000 0x08002FFF] checksum; 0x001EF353

Address 0 1 2 3 4]] T L] 9 A B C D E F Al A
2D |E9 |FF |47 |06 |48 |OF |48 |90 |46 |20 |28 |4F |[EA |58 (19 |-%
Ox03001010 47 |F2 |00 |03 |C2 |F2 |01 |03 |42 |(F2 |00 |02 |CO |(FE& |00 |02 |G?
Ox03001020 o |21 | |A8 |00 |95 |00 |FO |58 |(FE8 |00 (24 |OC |EO |04 |FB |!O%
0x03001030 05 |FO |07 |EB |80 |02 |04 |FB |05 |(FO |06 |EB |80 |01 |2B |48 |07
0x03001040 01 |A8 |00 |FO |05 |F&8 |84 |1C |4C (45 |FO (D3 |BD |EB |FF |87 |O?

A..anananCa e rn o ar An an ar an A an aa o e o An fn =+ ¥

Method B: The solution provider uses the compiled project to generate a .bin file directly, and
take the corresponding section in the SLIB area. For example, in the KEIL project, add “fromelf.exe

2023.7.11 35 Ver 2.0.0

1?[? AT32A403A Security Library Application Note

--bin --output .\Listings\@L.bin 'L” in the “user” option to generate a .bin file of the corresponding
firmware, and add a suffix “.bin” to the SLIB area file. In this example, they are “ER_SLIB.bin” and
“ER_SLIB_DATA.hin”, corresponding to the SLIB-INSTRUCTION file (0x08001000) and SLIB-
DATA file (0x08002000), as shown in Figure 43.

Figure 43. Generate .bin file of SLIB code

YRS Iar Trr —
Device | Target | Output | Listing User |C/C+ | sn | Liker | Debug | Utilities |
Command Items User Command w Stop on Exi.. 5.
[z} Before Compile C/C++ File
[~ Run =l (5] Mot Specified |
[~ Run#2 (2] Not Specified | ™
£ Before Build/Rebuild ER IROM1
™ Run#l (23] Not Specified | - -
[~ Run#2 (3] Mot Specified |] ER_IROM2
(=) After Build/Rebuild
[¥ Run #l fromelf.exe —bin —output AListings\@L.bin L 5] Not Specified | [~] ER_SLIE_DATA
[~ Run2 (2] Not Specified | ™
|| ER_SLIB_INSTRUCTION

(2) Use ICP Programmer to program the ER_SLIB_INSTRUCTION.bin and ER_SLIB_DATA.bin
to MCU, as shown in Figure 44.

Figure 44.0nline programming to MCU via ICP

= & DownLoad Form - X

File J-Link settings ~ AT-Link settings Target Language Help Extra options

Disconne | [PartNumber: AT32A403AVGT7 _ FlashSize: 1024KB | ’I ?l- ? Frase opfions
- Erase the sectors of file size ™
ATLink Plus FW:V2.2.8 AIN: A6200588A8117C11 4+
AT.Link SN: 697, 7413078D07
ATLink g&' ["}# jj Verify
Extra configuration
SPIM Config [Disable FAP before download

Memory read settings [] Enable FAP after download

Address 0x 08000000 Read size (x [00000300 Databits |g bits Read [Jump to the user program

[write user system data [] Button free mode
e nfo
Mo File name File Size Address range(0x) Add
1 ER_SLIB_INSTRUCTION.bin 280 08001000-08001117 Delete
2 ER_SLIB_DATA bin Mé 08002000-08002073 "
sLib settings Software serial number{SN)
sLib status: Disable Remaining usage times: 256
[] Enable sLib Main Flash
Flash CRC File CRC verify
sLib enable password Ox | 5665566 || stant sector Sector2—0x08001000
Flashinfo File:ER_SLIB_DATA bin
Address range:[0x08002000 0x08002073] checksum: 0x00002C29 [] Disable sLib before download DATAstart seftor | Sector4—0x08002000 ~
slibdisablepassword Oc| | Endsedtor Sector5-0x08002800 -
Address o |1 2 |5 |+ |5 |6 |7 | 9 Ja & |c |o [[F [ain~
BB E1 |EE |BA (12 |22 D0 |BA |00 (o0 (o0 (o0 |FT |s5 |72 [3B |B Disable sLib
003002010 CF |4€ |04 |3c |s8 |c2 (0B (3C |00 (00 (00 (80 |[SE (85 |8E |BC |4
003002020 8 |DC |08 |BD |9C |A3 |08 |BD |00 (00 (00 |00 (oA (82 [8A (3D |if
008002030 Fo |DB |18 |3 |SF |46 |84 |3 |06 (41 (80 |[3E |[SF (46 |64 [3E |5F
0x08002040 Fo |DB |18 |3 |0A |82 |8A (3D |00 [o0 (o0 |00 [sC (A3 [e8 [BD |5F
AAnARnArA nn Y An ~n Ar ar ar nm lan an nn nn ra ~n s A 15 v
>
| Start Download Close
| [13:16:15: [at32a403a_project_I0.hex] checksum; 0x000CF1ES ~|

(3) End users also can use ICP Programmer to set an offline project and save it to AT-Link, and
then complete offline programming to MCU through AT-Link, as shown in Figure 45.

2023.7.11 36 Ver 2.0.0

ll?l_ ? AT32A403A Security Library Application Note

Figure 45. Offline programming to MCU via AT-Link

[AT-Link Setting - X
AT-Link settings AT-Link offine config settings AT-Link offline download status
Offline project ~ Delete Creat
Project name |slib_project Device AT3244034 ~ AT32A4034/GT7 R
MNo. File name File size Address range(0x) Storage locat.. Add
1 ER_SLIB_INSTRUCTION. bin 280 03001000-08001117 Delete
2 ER_SLIB_DATA bin 116 08002000-08002073
< >
Erase option Erase the sectors of file size ~
[] Download times I:I Werify
[] Encryption transmit
[] Resetand run Download interface | SWD ~
[] write user systemdata | |
[] Enable FAP after download
Software serial number(SN) SPIM settings SLib Settings Bluetooth module Mac setting OTP &4 | *
Enable sLib [Main Flash
sLib enable password Ox 55665566 Start sector Sector2—0x08001000 ~
[] Disable sLib before download DATA start sector Sectord—0x08002000 ~
sLibdisablepassword Ox | | | Endsector Sectors—0x08002800 v
Load parameters Save parameters
Open project file Save project file Save project to AT-Link Close

(4) After completing step 2/3, end users can get the MCU with programmed SLIB area (SLIB
status: enabled), and program the application code to MCU through online or offline

programming, as shown in Figure 46.

2023.7.11 37

Ver 2.0.0

AR[R

AT32A403A Security Library Application Note

4.2

Figure 46. End users program codes to MCU

File J-Link settings ~ AT-Link settings ~ Target Language

[pownLoad Form

FED Extra options

Disconne |PartNumber: AT32A403AVGT7

FlashSize: 1024KB | Erase options

AR

Erase the sectors of file size

ct

AT-Link Plus FW:V2.2.8 AIN: A6200588A8117C11
" AT-Link SN: 697A59030040947413078D07 (WinUSB)

AT-Link

Verify

VY

Extra configuration
SPIM Config

Memory read settings

[] Disable FAP before download

[] Enable FAP after download

Address 0x |08001000 Read size 0x 00000118 Data bits | 8 bits Read
[] Write user system data
File info
o File name File Size TESS range(ox, Add
1 al32a403a_project_Ithex 7168 0800035F,08003000-0800483F ||| pejete

sLib settings Software serial number{SN)

Flashinfo File:at32a403a_project_I1.hex

Address range:[0x08000000 0x080003BF] Address range:[0x08003000 0x0800483F] checksum: 0xD00ABTES

> sLib status: Enable

R =
File CRC verify Download EEieelD
sLib enable password Ox | 5665566

[Disable sLib before download

Flash CRC

[Jump to the user program

[] Button free mode

Start sector

Remaining usage times: 255
Main Flash

Sector2—-0x08001000

DATAstart sector | Seclord—0x08002000

End sector

Sector5-0x08002800

Address o 1 2 3 4 5 6 7 8 9 A B c o E F AL A CIDCEEEDETRETD l:l
38 (13 (00 |20 [o1 (30 |00 |08 |F7 |35 (00 (08 |EF (35 |00 |08 |8} Disable sLib
0x05000010 F3 |35 |00 |08 [cF (35 [oo |08 |71 (36 |00 (08 |00 |00 |00 |00 |7

0x08000020 oo 1] 00 00 00 |00 |00 |00 (OO [] oo 1] FB |35 00 08

0x08000030 D3 |35 |00 08 |00 (00 |00 |00 |F9 |35 |00 08 FD |35 00 g |7

0x08000040 18 |30 00 08 |1B |30 |00 |08 (1B |30 oc 08 1B |30 0o 08 |00

v

s - P P P e Tan Ton Toe Ton 1o

‘ \at12a4N3a nrniect 10 binWFR S1 IR NATA hinl File downlnad sicresefulb? ! ~ I

Start Download

Close

Integrate and program codes

Integrate the SLIB code of solution provider and the end user application code to an offline project,
and then download the integrated code to MCU through AT-Link offline programming. The process
is as follows:

(1) The solution provider handles the compiled project as aforementioned to get a slib.bin file;

(2) The solution provider uses ICP Programmer to generate an offline project and save it to PC.
Parameters (such as number of download, project files binding to AT-Link and enable FAP
after download) can be configured as needed. Save the offline project as follows

Note: The offline project is encrypted. To enhance security, the solution provider also can set the slib.bin file
as an encrypted slib.benc file and then add it to the offline project. In this case, the offline project can only be
used on the AT-Link with the corresponding encryption key

2023.7.11

38

Ver 2.0.0

AR

AT32A403A Security Library Application Note

Figure 47. Set offline project

[AT-Link Setting - X
AT-Link seftings AT-Link offline config settings AT-Link offline download status
Offline project ~ Delete Creat
Project name Device |AT32A403A ~||ATazad03aveT? v
L Eile nam Eile si Address range(l Storage locat Add
1 ER_SLIB_INSTRUCTION.bin 280 03001000-08001117 Delete
2 ER_SLIB_DATA.bin 116 08002000-08002073
< >

Erase the sectors offile size ~

Verify

Erase option

[Encryption transmit

[] Resetand run Download interface SWD

[] write user system data

[] Enable FAP after download

Enable sLib

Software serial number(SN) SPIM settings SLib settings Bluetooth module Mac setting OTP & ¢ | *

Main Flash

sLib enable password 0x 55665566 Start bector
[Disable sLib before download DATAEtart sector

sLib disable password 0x I:l End dector

Sector2—-0x08001000 ~
Seclor4-0x08002000
Seclor5-0x08002800

Load parameters

Open project file Save project file

Save project to AT-Link

Save parameters

Close

[AT-Link project file settings

[1 This projectis only used atthe specified AT-Link.

AT-Link SN: ‘69?A5903004094T413078DUT

] This projectis only used once

AT-Link AIN: |a6200588A8117C 11

oK

Cancel

(3) After obtaining the offline project, the end user should use ICP Programmer to open the project
file and add the application codes to the offline project; then save to PC or AT-Link, and
perform offline download. Figure 48 shows how to add the project file.

Note: To protect codes from being leaked or decoded, do not change other settings when adding code file to
the offline project, which requires the solution provider to configure the final settings in advance.

2023.7.11

39

Ver 2.0.0

,’I?I' ? AT32A403A Security Library Application Note

Figure 48. Add project file

[AT-Link Setting — *

AT-Link settings AT-Link offline config seftings AT-Link offline download status

Offline project ~ Delete Creat
Frojectname |slib_project Device |AT32A403A AT3I2A403A/GTT

Mo. File name File size Address range(0x) Storage loca ™ Add
1 ER_SLIB_INSTRUCTIOMN.bin 280 08001000-08001117 Delete
2 ER_SIIA_DATA hin 116 0A002000-0800707 3

3 at3Zad403a project I1.hex aG60 08000000-080003BF v

< >

Erase option | Erase the sectors offile size

Software serial number(SN) SPIM settings SLib settings Bluetooth module Mac setting OTP § * | *
Enable sLib sLib position Main Flash

sLib enable password Ox start sector Sector2—-0x08001000

Sectord—-0x08002000

Sector5—0x08002800

Load parameters Save parameters

Open project file Save project file Save project to AT-Link Close

2023.7.11 40 Ver 2.0.0

1?[? AT32A403A Security Library Application Note

5 Revision history
Table 2. Document revision history
Date Version Revision note
2023.07.11 2.0.0 Initial release.

2023.7.11 41 Ver 2.0.0

?r ? AT32A403A Security Library Application Note

IMPORTANT NOTICE — PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services; ARTERY assumes no liability for
purchasers’ selection or use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous
representation in any forms. If any part of this document involves third party’s products or services, it does NOT imply that ARTERY
authorizes the use of the third party’s products or services, or permits any of the intellectual property, or guarantees any uses of the third

party’s products or services or intellectual property in any way.

Except as provided in ARTERY'’s terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty,
relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a
particular purpose (based on the corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other
intellectual property right.

ARTERY’s products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have
specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements
on product function safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other
applications that may cause injuries, deaths or property damages. Since ARTERY products are not intended for the above-mentioned
purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks
caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with

all statutory and regulatory requirements regarding these uses.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will
immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and
ARTERY disclaims any responsibility in any form.

© 2023 ARTERY Technology — All Rights Reserved

2023.7.11 42 Ver 2.0.0

	1 Overview
	2 Application principles
	2.1 Application principle of sLib
	2.2 How to enable sLib protection
	2.3 How to disable sLib protection
	2.4 Compile and execute program in sLib
	2.4.1 Setting interrupt vector table as sLib area not allowed
	2.4.2 Correlation between sLib area and user code area

	3 Examples of sLib application
	3.1 Requirements
	3.1.1 Hardware
	3.1.2 Software

	3.2 Overview
	3.3 SLIB-protected code: FIR low-pass filter
	3.4 Project_L0: Example for solution providers
	3.4.1 Generate execute-only code
	3.4.2 Compile security library address
	3.4.3 Enable sLib protection
	3.4.4 Project_L0 execution process
	3.4.5 Generate header file and symbol definition file

	3.5 Project_L1: example for end users
	3.5.1 Create user application project
	3.5.2 Add symbol definition file to project
	3.5.3 Call functions in sLib-protected area
	3.5.4 Project_L1 execution process
	3.5.5 SLIB protection in debug mode

	4 Integrate codes and download
	4.1 Program codes separately
	4.2 Integrate and program codes

	5 Revision history

