?r ? AT32A423 Security Library Application Note

ANO0209
Application Note

AT32A423 Security Library Application Note

Introduction

This application note is written to help users with a better understanding of the application
principles, the use of software resources and example codes relating to the security library of
AT32A423 series.

Applicable products:

Part number AT32A423xx

2024.03.07 1 Ver 2.0.0

_\)r ? AT32A423 Security Library Application Note

Contents
1 (@ V2= QT PP PPPPPPPPPPP 7
2 PrINCIPIES e 8
2.1 SLib application PriNCIPIES. . .. e 8
2.2 How to enable SLID ProteCliONccuuuuiiiiiiieeiieiie e 10
2.3 How to disable SLID ProteCHION..........uuuuuiiiiiiiiiiiiiiiiiiiiii i 11
2.4 SEL AN FUN SLID L.uiitiiiiiiitiiit b 11
2.4.1 Don't set interrupt vector table as sLib instruction area...............cc.cccooiii i, 12
2.4.2 Relevance between sLib code and USEr COUEc.oeiveiiiiieniiieiiee e 13
3 Example code in SLib ... 15
3.1 REOUITEMENES ..ottt ettt e bt sesssnnnnnnenes 15
311 Hardware reqUIFEIMENTS.coii i iieie ettt e et e e st e e e s st e e e snbee e e s snbeeeeesneeeens 15
3.1.2 SOMWAre reqUIFEIMENTSeiiiiiiiiie ettt e e e e s b e e e e e anne e s 15
3.2 EXAMPIE PrOJECLESeieiiiiiiiiiiiiiieieee ettt et a st et s eensbnnnnnnnnes 15
3.3 sLib protected code: FIR lOW-PASS filter...........uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiviiieivivevevenenenenes 16
3.4 Project_LO: example for SOIUtion Providers..............eueeeeeiiieiiiiieiiiiiiiiiieiieeeeieeeeeeeeeee. 17
3.4.1 Generate eXeCULE-ONIY COUEooiiiiiiiiiiiiie e 17
3.4.2 St SLID AAArESS.eiiiiiiiiii e 19
3.4.3 How to enable SLib fUNCHONcooiiiii e 23
3.4.4 ProjeCt_LO flOW CRAI.........eoiiiieie e e 26
3.4.5 How to generate header files and symbol definition filescccocoiiiiiiiinnnen. 27
3.5 Project_L1: example fOr €N USEISuuiuiiiiiiiiiiiiiiiiiiiiiieiieeieseeeeeseneeeeeseneneeenenenene 29
3.5.1 Create @ USEI PIrOJECT.cuuiiiiiiiieee ettt ettt ettt e et e e et e e e nnbe e e e e snaeee s 29
3.5.2 Add symbol definition file INt0 ProjeCt.........occueiiiiiiiiiiiie e 30
3.5.3 Call SLID fUNCHONSeiiiiiiiiiee e e e e et e e st e e e e e nnaee s 31
3.54 ProjeCt_LL fOW Chart.........ooiiiiiiii e 31
3.5.5 sLib protection in debug MOoooiiiiiiiiii e 32
4 Integrate and download codes of solution provider and userccc........ 35
4.1 Write code separated on solution provider and end USEer............cccovvvvviiiiiiniineneeennns 35
4.2 Combine solution provider code with end user codecooovvvviieieeiiiieeeiiiie e, 38

2024.03.07 2 Ver 2.0.0

ll?l_ ? AT32A423 Security Library Application Note

5 REVISION NISTOIY oo 41

2024.03.07 3 Ver 2.0.0

’I?F ? AT32A423 Security Library Application Note

List of tables

Table 1. AT32A423 series Flash Memory CapaCity.........c.ooueeieiiiiiiiiiie e 9
Table 2. Document reViSion NISTOIY..........ouiiii e e e e 41
D y 1]] . I O

2024.03.07 4 Ver 2.0.0

<[

? AT32A423 Security Library Application Note

List of figures

2024.03.07

Figure 1. Flash memory map with SECUNItY lIDFary..........cooo i 9
Figure 2. Example of literal POOI (1).......eeieiiiiiiie ettt st e e e ea e 12
Figure 3. Example of literal POOI (2)........ooei it 12
Figure 4. Example of sLib function calls a function in the user code area...........ccccceeeviieiiiiiienenns 13
Figure 5. Example of user-defined fUNCHON............oouiiiiiiiiiie e 14
Figure 6. FIOW Chart @XamPleeeuiiiiiiieie e e e e e e e s e e e e e e e e snnnraneeeeeeas 15
[To |81 (=R o] o] o= 11 Te] T [=T = o ISR 16
Figure 8. FIR IOW-PASS fIIEIcci it e e e e e e e e e e e aeeeeeee s 16
Figure 9. Enter Option WINAOW iN KEIlcoiuiiiiiiiiie ettt e e sneeeeeeae 17
Figure 10. Check Execute-only Code iN KEil.........uuiiiiiiiiiiiiiie et 18
Figure 11. Enter Option WINAOW iN TAR ...t ettt e et e e e sneeeeeeae 18
Figure 12. JAR C/CH+ WINUOWueiiiiiiiiie ettt ettt sit e e sttt e e st e e s sste e e e senbeeeessnseeeeesnnreeaeanns 19
Figure 13. Flash memory map and RAM segment in the example........ccccccoovviciieeieee e, 19
Figure 14. Linker Settings iN Kluiiiiiiiiiiiieie e e e e e e e e e eneaeeeas 20
Figure 15. Keil scatter MOIifICALIONcoiiiiiiiiiiiiie e e e e e e e s e e e e e e s snnneneeeeeees 21
Figure 16. RAM address change in Keil............uuuiiiirii oo e e e e 21
Figure 17. Constant address change in Keilcooiiuiiiiiiiiii e 21
Figure 18. SLIB address definition in iCf filec.ooiiiiiiie e 22
Figure 19. Address distribution iNICf fileooi e 22
Figure 20. Modify RAM iN ICT fIl@oii i e e e 23
Figure 21. Modify sLib constant address in TAR.........coii i a e 23
Figure 22. ICP Programmer OPErationcc.uuuiiiieeeeiiiiiiiieeeeeeeessssreeeeeeeesssssssseaeeeeeeesssnnnnsseneeeeees 24
Figure 23. SLib SettiNgS PAramMELErSccciiii it e e e e e e e e s e e e e e e e e snnreneeeaaeeas 25
Figure 24. Project_LO flOW CRart..........ceiiiiiii i e e e e e e e e e e e snnnneeeeaae s 26
Figure 25. Keil MiSC CONIOIS OPLION......ciiiiiiiiiiiiiieie e e et e e e e e s e e e e e s e s e e e e e e e e s nnnreneeeaeees 27
Figure 26. Modified fir_filter_SYMBOLIXE.ooiii e 28
Figure 27. AR BUild ACHONS OPTIONoiiuiiiiiiie ittt st e et be e e e e eneeas 28
Figure 28. Edit SteeriNg_filE.IXEcoiiie e 28
Figure 29. Modified SCAEr fil.......coouiiiiii e 29
(1o 0TI T O I oo [1= To N Tt 11 PR 30
Figure 31. Add symbol definition file in Keil............cooiiiiiiiiiiiee e 30
Figure 32. Change symbol definition file to Object fileuevvveeeiiic e 30
Figure 33. Add symbol definition file iN TARooriii i e e e 31

- - 5 - T T Ver2.00

5

AT32A423 Security Library Application Note

2024.03.07

Figure 34. ProjeCt_L1 flOW Chart.........uuiiiiiiiiiiiiiieee et e e e e e e eeeae s 32
Figure 35. “Show Disassembly at ADdress” WiNdOWcccveriiiiieeiiiiiee s e e e e seee e 33
Figure 36. “Show Code at Address” SEtiNg.........ccuviviiiiir e 33
FIQUIE 37. VIBW COUReeeiiieeiee e e ettt e e ettt e e e e e e sttt e e e e e e e ss st ae e e e e e e e aaanssteaneeeeeeeennnsnnneneeaeeas 33
Figure 38. View code in MemOry WINAOWooiuiiiiiiiiie ittt e e e s eiee e e s sneeeaeeae 34
Figure 39. View SLIB_READ_ONLY start SECtor in MEMOIYcoiiiiiiiieiiiiiee e 34
Figure 40. SLIB Write ProteCtioN TESTcooi ittt st e e e saeeeeeaae 34
Figure 41. Write protection error INTEITUPLcoo ittt e e e saeeeeeeae 34
FIQUre 42. SAVE SLIB COUR........cci ittt e e e e s e e e e e e e s e e e e e e e e e s nnsrenneeaeeas 35
Figure 43. Change SLIB code t0 BIN fil@c.euiiiiiiee e e e 36
Figure 44. ICP programs MCU ONIINEcooiuiiiiiiiee et e e e e e e e e sraee e e e e e e s e nnnaeeeeeeeeen 36
Figure 45. AT-Link programs MCU OffliNe............ueiiiieiiiiiec e e e 37
Figure 46. End user programs OO 10 MCU.........uuiiiiiiiiiiiiiiiee et e e e sneeee e e 38
Figure 47. Create Offling PrOJECToooi i saeeee e e 39
Figure 48. Add ProjeCt fileeoi et e e nraeaeean 40

6 Ver 2.0.0

?r ? AT32A423 Security Library Application Note

1 Overview

At present, as an increasing number of microcontrollers (known as MCU) require complex
algorithms and middleware solutions, how to protect core algorithms and other IP codes of solution
providers has emerged as one of the most important concerns in the field of MCU applications.

In response to this demand, AT32A423 series is equipped with a security library, known as sLib,
with the aim of preventing important IP codes from being altered or read by end user program, so
as to safeguard the rights of solution providers.

Here this document will detail the application logics behind AT32A423 series’ security library and its
software usage.

2024.03.07 7 Ver 2.0.0

_\)r ? AT32A423 Security Library Application Note

2

2024.03.07

Principles

sLib application principles

Any part of Flash memory can be designated as a security library (sLib) with password. This
sLib is used for storing critical algorithms by solution providers while the remaining memory
area can be used for secondary development by end users.

sLib is divided into a read-only area (SLIB_READ_ONLY) and an instruction area
(SLIB_INSTRUCTION). Part of or the entire sLib can be set as read-only area or instruction
area.

SLIB_READ_ONLY can be read through I-Code and D-Code, but it is write-protected.

Program codes in the SLIB_INSTRUCTION area can only be fetched (only executable) by
MCU through I-CODE. They cannot be read out by reading access (including ISP/ICP/debug
mode or boot from internal RAM via D-Code, for accessing SLIB_INSTRUCTION by reading
operation will return all OxFF.

Codes and data within sLib cannot be erased unless a correct password is entered. Performing
write or erase operation in case of wrong password entry will trigger a warning from
EPPERR=1 of the FLASH_STS register.

Mass erase to the main Flash memory by end users will not affect codes and data in the sLib,
meaning that programs and data in this secure area will not be erased.

After sLib feature is enabled, users can also unlock this protection by writing a correct
password in the SLIB_PWD_CLR register. Once sLib is unlocked, MCU will erase the whole
main memory, including sLib. This kind of design is to protect program codes against leakage
even if the password set by solution providers is leaked.

Figure 1 below shows a block diagram of main Flash memory with security library. Programs and

codes stored in the security library can be called and executed by end users, but they are read-

protected.

8 Ver 2.0.0

][R

AT32A423 Security Library Application Note

Figure 1. Flash memory map with security library

User_Code_Start@

User_Code_End@

SLIB_Start@

SLIB_End@

USER CODE

SLIB_READ_ONLY

SLIB_INSTRUCTION

The size of sLib area is configured based on the sector level, and the size of each sector is subject

to the specific MCUs. Table 1 lists the main Flash memory size, sector size and its configurable

range.

When the 20 KB boot memory is defined as Flash memory extension area, it can also be

functioning as a sLib area.

Table 1. AT32A423 series Flash memory capacity

Part number Internal Flash (Byte) Sector size (Byte) Address range
Sector 0 ~ 63
AT32A423x8 64K 1K
(0x08000000 ~ OxO800FFFF)
Sector 0 ~ 127
AT32A423xB 128K 1K
(0x08000000 ~ 0x0801FFFF)
Sector 0 ~ 127
AT32A423xC 256K 2K
(0x08000000 ~ Ox0803FFFF)

2024.03.07

Ver 2.0.0

_\)r ? AT32A423 Security Library Application Note

2.2

2024.03.07

How to enable sLib protection

By default, sLib setting register is not readable and write-protected. Before writing to this register,
users need first unlock the register by keying in the 0xA35F6D24 value to the SLIB_UNLOCK
register, and then check if the unlock operation is successful by checking the SLIB_ULKEF bit in the

SLIB_MISC_STS register. If successful, sLib setting register can now be written.

Follow the procedures below to enable Flash memory sLib:

Check the OBF bit in the FLASH_STS register to confirm that there is no other ongoing
programming operation;
Write OxA35F6D24 to the SLIB_UNLOCK register to unlock security library;

Check the SLIB_ULKF bit in the SLIB_MISC_STS register to confirm that the unlock operation
is successful;

Set the sectors to be protected, including the SLIB start address and end address as well as
SLIB instruction area start address, through the SLIB_SET_RANGE register;

Wait until the OBF bit is cleared (“0”);

Set a sLib password through the SLIB_SET_PWD register;
Wait until the OBF bit is cleared (“0”);

Program codes to be stored into sLib;

Perform system reset, and reload sLib setting words;

Read the SLIB_STSO0/STS1 register to verify sLib settings.

Special attention to be paid to the following aspects:

Both the Flash memory and Flash memory extension area can be set as sLib. See Table 1 for
the configurable sLib ranges.

sLib codes must be programmed on a sector level, and sLib start address must be aligned with
that of Flash memory or Flash memory extension area.

Interrupt vector table as a data type is typically placed on the first sector (sector 0) of Flash
memory. As a result, sector 0 should not be set as an instruction area of sLib.

For details on sLib setting register, please refer to AT32A423 Series Reference Manual.

For the program code on enabling sLib, please refer to “slib_enable()” in the main.c of project 10

example case. Besides, it is also possible to set sLib through ICP or ISP programming tool, which

will be described in the subsequent sections.

10 Ver 2.0.0

_|— P AT32A423 Security Library Application Note

2.3 How to disable sLib protection

After sLib feature is enabled, it is possible for users to unlock it by writing the previously set
password in the SLIB_PWD_CLR register.

Once sLib is disabled, the device will perform mass erase on the main Flash memory, including the
contents in the sLib area.

Follow the procedures below to disable sLib:

® Check the OBF bit in the FLASH_STS register to confirm that there is no other ongoing
programming operation;

® \Write the previously set password into the SLIB_PWD_CLR register;

® Perform system reset, and reload sLib setting words;

® Read the SLIB_STSO register to verify sLib settings.

2.4 Set and run sLib

As described in the previous sections, program codes within the SLIB_INSTRUCTION area can be
fetched (only executable) by MCU through 1-Code, but they cannot be read out by means of
reading data via D-Code, so as to achieve robust protection. In other words, even the program
codes located in the SLIB_INSTRUCTION are forbidden to read data that are placed in the
SLIB_INSTRUCTION. Such data, for instance, include the likes of literal pool — compiled C
program code, branch table or constants, which will be read through D-code upon instruction
execution.

This indicates that only instructions, rather than data, can be placed in SLIB_INSTRUCTION area.
As a result, if necessary to store program codes in SLIB_INSTRUCTION area, there is a need for
users to generate execute-only code through compiler in order to prevent the generation of
abovementioned types of data

Figure 2 and Figure 3 give two examples of frequently-used literal pools and branch tables.

The “switch()” is a common jump command in C program. In Figure 2, the “sclk_source” variable
reads CRM_CFG register, and “LDR R7, [PC, #288]” is an assembly code. The program counter
(known as PC) is used to obtain the address of CRM_CFG register through indirect addressing.
The address of CRM_CFG register is stored at a nearby instruction area (also within
SLIB_INSTRUCTION) as a constant. At this point, executing “switch()” instruction will trigger data
read. If such program code exist in SLIB_INSTRUCTION area, an error will occur upon program
execution.

In Section 3, we give an example detailing how to avoid this problem through setting compiler.

2024.03.07 11 Ver 2.0.0

1?[? AT32A423 Security Library Application Note

241

2024.03.07

Figure 2. Example of literal pool (1)

0x08004798 2600 MCVS r&, #0x00
79: 3clk_source = (crm_sclk_type)CBM-»>cig bit.sclksts;
20:
cS0x0B00479A 4F39 LDR r7, [pc, #228] ; BOx0BO04880
0x0800479C &87F LDR 7, [T7, #0x04]

O0x0800479E F3CT0381 UBFX r3,r7, %2, %2
81: switch (sclk source)

Mo
[N

case CRM SCLE HICK:

_] main.c] startup_at32f403a_407.s] at32f403a 407_clock.c || system_at32f403a 407.c]| at32f403a 407_am.c | at32f403a_407_gpio.c

77

78 /% get sclk source */

B> 79 || sclk_source = (crm_sclk_type)CRM->cfg bit. sclksts:

30

81 switch(sclk_source)

828 {

83 case CRM_SCLE_HICK:

84 if (((CRM—>misc3_bit.hick to_sclk) != RESET) && ((CRM->miscl bit.hickdix

85 svstem core_clock = HICK_VALUE * 6;

86 else

87 svstem core_clock = HICK VALUE;

88 break;

Figure 3. Example of literal pool (2)

137: system core_ clock = system core clock »»> div_wvalue:
O0x0800486E 4F0& LDR r7, [pc, #24] ; @BO=x0B004888
Ox08004870 &8B3F LDR r7, [T, #0x00]

Ox08004872 40F7 LSR5 r7,x7,r6
Ox08004874 FEDFCO10 LDR.W rilz, [pc, ¥16] ; BOx0S004888
DxO8004878 FECCTO00 STR 7, [x12, #0x00]
138: }
Z0x0800487C BDFO POE {r4-r7,pc}
Ox0800487E 0000 DCHW 0x0000
O0x08004880 1000 DCHW 0x1000
0x08004882 4002 DCHW 0x4002

Don’t set interrupt vector table as sLib instruction area

Interrupt vector table contains entry addresses of all interrupt handlers which are readable by MCU
using D-Code. In most cases, the table is located at sector O with start address 0x08000000 in
Flash memory. Therefore, the following rule should be respected when designating sLib instruction
area.

® The first sector of Flash memory should not be set as an instruction area of sLib.

12 Ver 2.0.0

][R

AT32A423 Security Library Application Note

2.4.2 Relevance between sLib code and user code

IP-code protected by sLib is able to call functions from a function library in the user code area. In
this scenario, IP-Code will also carry the addresses of such functions, allowing PC (program
counter) to jump to them while executing IP-Code. Once sLib is enabled, such functions’ addresses
are unchangeable. This means that these addresses in the user code area must be fixed or remain
unchanged; otherwise, PC will jump to a wrong address and fail to work. Based on this, before
setting sLib, it is necessary to place all functions relating to IP-Code in sLib to avoid such problem.
Figure 4 gives an example on how a protected Function_A() calls Function_B() in user code area.

Figure 4. Example of sLib function calls a function in the user code area

2024.03.07

User_Code_Start@

Function B fixed@ ' Function_B()

{
...... ; User code area
{
User_Code_End@

SLIB_Start@
Function_A()
{
Function_B(); SLIB area
}

SLIB_End@

Besides, there is another commonly seen scenario in which C language standard function library is
used, such as memset() and memcpy(). If both IP-Code and user code call such functions,
aforementioned problem may occur. Despite this, here are two ways to resolve this issue.

1)

2)

Place such functions in sLib. For more information, please refer to the corresponding Keil or
IAR documents.

Do not to use C language standard function library in the IP-Code. If there is a need to use
them, their names must be changed. In the example below, write a “my_memset()” function to

replace the previous “memset()”.

13 Ver 2.0.0

,’I?I' ? AT32A423 Security Library Application Note

Figure 5. Example of user-defined function

voidk my_memset (void *s, int ¢, size t n):

void arm_fir_ init f£32(
arm_fir_ instance f32 * 5,
uintl6é_t numTaps,
float32_t * pCoeffs,
float32_t * pState,
{ uint32 t blockSize)
=
/% Assign filter taps */
S—>numTaps = numTaps;

/% Assign coefficient pointer */
S->pCoeffs = ploeffs;

7Y Clear State DUTTer and INhe SizZe Of STate buifer 15 (blocksize T mumlaps — 17] %/
my_memset (pState, 0, (numTaps + (blockSize — 1u)) * sizeof(float32_t)) |

/% Assign state pointer */
S->pState = pState;

void¥ mv_memset (void *s, int ¢, size t n)
=X
while (n>0)

%((char¥)s + n— —1) = (char)e:

return (s);

2024.03.07 14 Ver 2.0.0

AT32A423 Security Library Application Note

Example code in sLib

This chapter offers example codes on the use of sLib alongside detailed operating procedures.

3.1 Requirements
3.1.1 Hardware requirements
® AT-START-A423 evaluation board with embedded AT32A423VCT7 microcontroller
® AT-Link debugger which is used to debug programs
3.1.2 Software requirements
® Keil® pvision IDE (this example here uses pvision V5.36.0.0) or IAR Embedded workbench
IDE (this example here uses IAR V8.22.2)
® ARTERY’s ICP or ISP programming tool to enable or disable sLib
3.2 Example projects
This application note offers two example projects demonstrating how software provider develops
IP-Code to meet end user application requirements.
® Project_LO shows how solution provider develops an algorithm and place it into sLib
® Project_L1 shows how end users apply this algorithm
Algorithms developed in Project_LO will be downloaded and programmed into AT32A423 device in
advance with sLib function being enabled. Meanwhile, the following information are also available
to end user programs.
® Main Flash memory map, indicating the area owned by sLib and the area that can be
developed by users
Header files containing algorithm function definitions, for user programs to call
Symbol definition file, containing the addresses of IP-Code functions, for users to call. See
Figure 6 below for reference.
Figure 6. Flow chart example
Project_LO
Programs SLIB protected code
Project_L1
Programs End User Code
Using SLIB protected functions
End user application
Software providers can refer to Project_LO and Project_L1 to develop algorithm code for end users.

2024.03.07

15 Ver 2.0.0

19[-3 AT32A423 Security Library Application Note

3.3

2024.03.07

Figure 7. Application diagram

Provide AT32A423 chip |Pz:r8§:eA$;:::;:iiip

) 00T — NS
Project_|O Project_|1

sLib protected code: FIR low-pass filter

The example here uses FIR low-pass filter algorithm from CMSIS-DSP library and sets it as sLib-
protected IP-Code. For details on FIR low-pass filter, please refer to the CMSIS-DSP-related
documents as the subsequent sections focus only on how to set sLib to protect such algorithm and
how to be called by end user programs.

In the example, the input signals of low-pass filter is from two sine wave signals with 1 KHz and 15
KHz respectively. The cut-off frequency is 6 KHz for this low-pass filter. After going through a low-
pass filter, 15 KHz signal is filtered, leaving only 1 KHz sine wave output.

Figure 8 shows a diagram of FIR low-pass filter function.

Figure 8. FIR low-pass filter

Input signal Output signal

1 1

i ; ; T ESURE R ONSRR SURRON: NSO

P O DR S UPTRS AE 06

| ‘ FIR Low Pass Filter ‘ 04

Mo S

a5 1 148 2 25 a 0.5 1 15 2 a5
<10 o’

B
Il

The following CMSIS DSP functions and files will be used, including

® arm_fir_init_f32()

This is used to initialize filter functions, and it is included in the arm_fir_init_f32.c.
® arm_fir_f32()

This is a main part of a filter algorithm, and it is included in the arm_fir_f32.c.

® FIR lowpass_filter()

This is a global function of FIR low-pass filter, written on the basis of the two above functions. It is
called by end user applications. It is included in the fir_filter.c.

® fir_coefficient.c

This .C file contains coefficients used in the FIR filter. These coefficients are read-only constants. In
the example, they are placed in the read-only sLib.

In the example, FPU and DSP instructions embedded in the device are used to handle signals and
for floating point operation in order to guarantee correct operation and output signals.

16 Ver 2.0.0

_\)r ? AT32A423 Security Library Application Note

3.4

3.4.1

2024.03.07

Project_LO: example for solution providers

To begin with, the following procedures need to be operated:
® Compile algorithm-related functions as execute-only ones;

Place algorithm code in sector 4 of main Flash memory;

® Place coefficients of filter functions in the sector 2 of main Flash memory;
® Execute “FIR_lowpass_filter()” in the main program to verify;
® After successful verification, set sector 4 as a sLib instruction area, and sector 2 as a read-only

sLib area. This step can be done by calling “slib_enable()” in the main program of this
example, or by using Artery ICP Programmer tool (recommended).

® Generate header files and symbol definition files used for calling low-pass filter functions by
end user programs.

Generate execute-only code

Every toolchain offers its own setting options used to avoid the generation of literal pools and
branch table by compiler, for they may produce a format of instruction reading data when an
instruction is executed, for example, LDR Rn, [PC, #offset], etc.

For more information on literal pools and branch table, please refer to Section 2.4.

Taking Keil® pvision as an example, Keil® pvision has an “Execute-only Code” option to conduct

settings below:

Keil® pvision: use Execute-only Code option

Proceed as below:

® Choose a C file group or an individual C file. In the example, the would-be protected C files are
included in the fir_filter group.

® Right click and choose corresponding file, for example, “Option for File ‘arm_fir_f32.c””, as
shown in Figure 9.

Figure 9. Enter Option window in Keil

=14 fir_filter
&_’I arm_fir_f32.c -
$J arm_fir_init_f32.c aﬁ\ Options for File "arm_fir_f32.c"... Alt+F7
_’| fir_coefficient.c Remove File ‘arm_fir_f32.c’
$—1 flr_fllter.c ﬁ Manage Project Ikems...

® [n “C/C++" window, check “Execute-only Code” option, then the “--execute_only” command is
added to the compiler control string, as shown in Figure 10 below.

17 Ver 2.0.0

:-‘ll ? I-

? AT32A423 Security Library Application

Note

Figure 10. Check Execute-only Code in Keil

2024.03.07

Froperties C/CH |

 F Symbols

Define: I

Undefine: I

C Language / Code Generation
¥ Execute-only Cods | [7 Strict ANSI C

Optimization: I(defaulb ;I [¥ Enum Container always int INl Wamings jv

Wamings:

[¥ Optimize for Time [¥ Plain Charis Signed [¥ Thumb Mode
[Split Load and Store Multiple [¥ Read-Only Position Independent [¥ No Auto Includes
[¥ One ELF Section per Function [¥ Read-Wiite Position Independert [¥ €99 Mode
Include
Paths I B
Misc I
Controls

Compiler | |-execute_only -ctq:u Cortex-M4 fp -D__MICROLIB g -00 —apcs=interwork —split_sections | .\ \. »
control =t frersting - S Nibrares \omsis\cmdhcore_support - 8 Nibranes emsis
string

[1):4 I Cancel Defanlts Help

® There are three files, i.e., arm_fir_f32.c, arm_fir_init_f32.c and fir_filter.c in
SLIB_INSTRUCTION area. All of three must be configured as execute-only code.

IAR: use “No data read in code memory” option
Proceed as follows:

® Choose a particular file from “fir_filter” group, and right click and choose “Options”.

Figure 11. Enter Option window in IAR

—1 Wl fir_filter

arm_fir_{32.c -
arrr_fir_init_{32.c Options...
[5] fir_coefficient.c —

2] fir_filter.c

® In "C/C++" window, check “Override inherited settings” and “No data read in code memory”, as

shown in Figure 12.

18

Ver 2.0.0

ART

? AT32A423 Security Library Application Note

3.4.2

2024.03.07

Figure 12. IAR C/C++ window

[Exchude from build

Categany: | Oweride inherited settings | Factary Settings

Static Analysis
Runtime Chedking

Custom Build Freprocessor | Diagnostics | MISEA-C: 2004
MISRA-C:1998 | Encodings | Extra Optiens
Language 1 | Language 2 | Code |Uptimizations | Output IList

Frocessor mode

Arm
(@ Thumb

Fozition-independence

utode and read-only data [(ropi)i
Dﬁeadt”write data (rwpil
Ho dymamic readfwrite initializati

Ho data reads in code memoryl

’ 0K H Cancel]

® There are three files, i.e., arm_fir_f32.c, arm_fir_init_f32.c and fir_filter.c in the
SLIB_INSTRUCTION. All of three must be configured as execute-only code.

Set sLib address

As mentioned in the previous sections, the sector 0 of Flash memory is used to store interrupt
vector tables, and thus the example case sets sLib starting from sector 2. Note that sector 4
represents sLib instruction, and sector 2 represents a read-only sLib. Figure 13 below shows Flash
memory map and RAM range distribution. The RAM segment is mainly aimed at preventing the use
of the same RAM by sLib-protected code and user code.

Figure 13. Flash memory map and RAM segment in the example

0x20000000 0x08000000
Vector table
User RAM User code
0Ox08000FFF
Ox2000AFFF 0x08001000
0x20008000 SLB_READ_ONLY
SLIB used RAM - -
Ox08001FFF
0x2000BFFF 0x08002000
SLIB_INSTRUCTION
Ox08002FFF
0x08003000
User code
0x0803FFFF
- r I I | S] -

19 Ver 2.0.0

?r ? AT32A423 Security Library Application Note

Keil® pvision: scatter file

Proceed as follows:

® (o to Project - Options for Target->Linker, cancel “Use memory layout from Target Dialog”
option, and then click “Edit” to open “slib-w-xo.sct” for modification, as shown in Figure 14.

Figure 14. Linker settings in Keil

K Options for Target 'at_start_f403a' @
Device] Target] Dutput] Listing} T=zer] C/CH] A=m Linker]Debug I Ttilities]
| ™ Use Memory Layout from Target Dialog | ¥/0 Base:
™ Make RW Sections Position Independent R/O Base: |0x08000000
™ Make RO Sections Position Independent R/W Base 220000000
I” Dont Search Standard Libraries
. e
¥ Report might fail' Conditions as Emors Clicia = |
S 1
caper | slib sct Edit...
3& | \slib-w 0 s J
Misc —symdefs=fir_filtter_symbol b -
controls il
Linker |—cpu Cortex-M4fp *o ~
contral |ibrary_type=microlib —strict —scatter " \slib-wxo sct"
string e
[1):4 Cancel Defaults Help

® After opening “scatter file”, place an object file of the code which needs to be put in the
SLIB_INSTRUCTION area into a dedicated load area named “LR_SLIB_INSTRUCTION", and
change its mark to “execute-only (+XO)”. This load area starts with sector 4 with a size of
sector. Meanwhile, it is necessary to reserve SLIB_READ_ONLY area and place it into a
specialized load area named “LR_SLIB_READ_ONLY”. This is to avoid compiler to store other
non-IP-Code functions into sLib.

RW_IRAM2 block ranges from 0x2000B000 to 0x2000BFFF. It is assigned to algorithm

functions of sLib, with the aim of preventing end-user projects from using the same RAM block
to cause program error.

2024.03.07 20 Ver 2.0.0

ll?l_ ? AT32A423 Security Library Application

Note

Figure 15. Keil scatter modification

LR_IROM1 0x08000000 0x001000 { : load region
ER_IROM1 0x08000000 0x001000 { ; load address
o (RESET, +First)
(InRoot$$Sections)
}.ANY (+R0O)

RW_IRAM1 0x20000000 0x0000B000 { ; user RW data
CANY (+RW +ZI)

RW_IRAM2 0x2000B000 0x00001000 { ; RAM used for slib code
}fir_filter.o (+RW +ZI)

}

LR_SLIB READ ONLY 0x08001000 0x00001000 { ; sLib read-only area
ER_SLIB_READ_ONLY 0x08001000 0x00001000 {
fir coefficient.o (+RO)

}

LR_SLIB_INSTRUCTION 0x08002000 0x00001000 { ; slib instruction area
ER_SLIB_INSTRUCTION 0x08002000 0x00001000 { ; load address = execution address
arm_fir init £32.0 (+X0)
arm_fir £32.0 (+X0)
fir filter.o (+X0)

}
LR_TROMZ2 0x08003000 0x0003D000 { pu

ER_TROM2 0x08003000 0x0003D000 { : lo
}.}L\IY (+R0O)

cution addre

m
4]

® With regard to the use of RAM, in addition to the abovementioned method, it is also possible to
use Keil “__attribute__ ((at(address)))” descriptor to place variables at a fixed address of

0x2000B000, as shown in Figure 16 below.

Figure 16. RAM address change in Keil

#if defined (__ICCARM__)]
s ic float32_t firStateF32[BLOCK_SIZE + NUM_TAPS 1 @

“defined (_ CC_ARM)

gendif

statlc float32 t firStateF32[BLOCK_SIZE + NUM_TAPS - 1] _ attribute | ((at{(0x2000B000))) :;

® Read-only sLib area starts with sector 2 (0x08001000). Constants used in FIR low-pass filter
functions should be placed at this address. In addition to the above “scatter file change”

method, it is also possible to use Keil “__attribute_ ((at(address)))” descriptor to place
constants at a fixed address as shown in Figure 17.

Figure 17. Constant address change in Keil

#if defined (ICCARM__)
const float32 t firCoeffs32[NUM_TAPS] @ 0x08001000 ={
ftelif defined (__CC_ARM)
const float32 t firCoeffs32[NUM TAPS] _ attribute_ {(at(0x08001000)))|= {
fendif

—-0.0018225230f, -0.0015879294f, +0.0000000000f, +0.0036977508f, +0.0080754303f, +0.0085302217f, -0.00(
—-0.0341458607f, -0.0333591565f, +0.0000000000f, +0.0676308395f, +0.1522061835f, +0.2229246956f, +0.25(
+0.1522061835f, +0.0676308395f, +0.0000000000f, -0.0333591565f, —0.0341458607f, -0.0173976984f, -0.00(
+0. 0080754303f, +0.0036977508f, +0.0000000000f, -0.0015879294f, -0.0018225230f
S - S N . L] [L]
2024.03.07 21 Ver 2.0.0

?r ? AT32A423 Security Library Application Note

IAR: ICF file

Proceed as follows:

® Open “icf” file under “\project_IONIAR_V8.2V", then add three new load areas, as shown below.
The SLIB_RAM area from 0x2000B000 to 0x2000BFFF is reserved for algorithm functions.

Figure 18. SLIB address definition in icf file

/* SLIB read-only area */
define symbol _ICFEDIT region SLIB READ ONLY start = 0x08001000;
define symbol _ICFEDIT region SLIB READ ONLY end = 0x08001FFF;

/* SLIB instruction area =/
define symbol _ICFEDIT region SLIB_INST start = 0x08002000;
define symbol _ICFEDIT region SLIB INST end = Ox08002FFF;

define symbol ICFEDIT region RAM start = 0x20000000;
define symbol ICFEDIT region RAM end = Ox2000BFFF;

/* SLIB RAM region */
define symbol _ICFEDIT region SLIB RAM start = 0x2000B000;
define symbol _ICFEDIT region SLIB RAM end = 0x2000BFFF;

® In ICFfile, sLib area should also be reserved in order to prevent non-IP-Code functions from
being placed into sLib area by compiler. At the same time, the RAM used for IP-Code should
be reserved as well.

Figure 19. Address distribution in icf file

/* Reserved 0x08001000 ~ 0x08002FFF as SLIB area */

define region ROM_region = mem:[from _ICFEDIT region_ROM start_ to _ ICFEDIT region ROM_end_]
-mem:[from _ICFEDIT region_SLIB_READ_ONLY start_ to _ ICFEDIT region_SLIB_READ_ONLY end]
-mem:[from __ICFEDIT region_SLIB_INST start_ to _ ICFEDIT region_SLIB_INST end_];

define region SLIB_READ_ONLY _region = mem:[from _ICFEDIT region_SLIB_READ_OMNLY start_ to _ICFEDIT region_SLIB_READ_ONLY end_];
define region SLIB_INST region = mem:[from _ICFEDIT region_SLIB_INST start_ to _ ICFEDIT region_SLIB_INST end_J;
/* Reserved 0x2000B000 ~ 0x2000BFFF as RAM used for SLIB code */

define region RAM_region = mem:[from _ ICFEDIT region_RAM start__ to _ ICFEDIT region_RAM_end]
- mem:[from ICFEDIT region SLIB RAM start to ICFEDIT region SLIB RAM end J;

define region SLIB_RAM_region = mem:[from __ICFEDIT region_SLIB_RAM start__ to _ ICFEDIT region_SLIB_RAM_end_J;

® For RAM used for IP-Code, it is possible to place variables at a fixed address of 0x2000B000
through IAR’s @ descriptors, or change “.icf” file as shown in Figure 20 below.

2024.03.07 22 Ver 2.0.0

’I?f ? AT32A423 Security Library Application Note

Figure 20. Modify RAM in icf file

/% Place IP Code in instruction area which will be SLIB protected %/
place in SLIB_INST region { ro object arm fir f32.o,

ro cbject arm fir init f32. o,

ro object fir filter.ol};

/% Place SLIB DATA(or CODE) in read-only area #*/
place in SLIB_READ ONLY region { ro object fir coefficient.o };

place in RAM region { readwrite,

block CSTACK, block HEAP };

/% Place slib used sram */
place in SLIB RAM region { readwrite object fir filter.o };

® The start address for read-only sLib is sector 2 (0x08001000) which is to store constants used
for FIR low-pass filter functions. In addition to the above-mentioned ICF file modification, it is
also possible to place constants at a fixed address through IAR’s @ descriptors.

Figure 21. Modify sLib constant address in IAR

I#if defined (__ICCARM__)

static float32_t firStateF3Z[BLOCK_SIZE + NUM_TAPS -
telif defined (__ CC_ARM)

static float32 t firStateF32[BLOCK_SIZE + NUM_TAPS - 1] _ attribute_ ((at(0xZ000B000)));

‘Hendif

3.4.3 How to enable sLib function

There are two ways to enable sLib function as follows:

(1) Use Artery ICP Programmer (recommended)
If use ICP Programmer, follow the steps below:

® Connect AT-Link to AT-START-A423 evaluation board and supply power to it

® Open ICP Programmer, select AT-Link connection, add Project_LO example and generate
HEX or BIN files, as shown below:

2024.03.07 23 Ver 2.0.0

AR

AT32A423 Security Library Application Note

Figure 22. ICP Programmer operation

m Artery ICP Programmer_V3.0.07 —

File J-Link settings AT-Link settings Target Language Help

et AT-Link-Pro FW:V2.2.2 AIN: 4E100108DF25AF25

Extra configuration

Memory read settings

Address 0x (08000000 Read size [y (00000490 Data bits |32 bits ~ Read

Flash info File:project_|0.hex

Address range:[0x08000000 0x0800048F] Address range:[0x08001000 0x08001073] Address range:[0x08002000
0x08002117] Address range:[0x08003000 0x08004F5F] checksum: O0x000E47F2

Address o 4 L] LB ASCI
20001E-A0 02003020 02003211 02003209 ?.-0.02.2.
(x08000010 02003200 020031ES 02003240 00000000 227
(08000020 00000000 00000000 00000000 08003215 | ... oz.
(08000030 030031ED 00000000 03003213 08003217 7..02.02.
(08000040 03003047 03003047 03003047 08003047 G0..G0..G0..G0..
2. nn n An An AR

Disconne | |PartNumber: Flash Size: 256KB | ll?r ?

Li : = =
ATLink o | AT-Link SN: 0180044300C0D4590507A907 (WinUSB) f&- 4- =+ jj

File info
Mo. File name File Size Address range(0x) Add
1 project_|0.hex 9660 08000000-0200048F 03001000-08001073,08(| pelete
< >

Flash CRC File CRC verify DownlLoad

9:15:27 : AT-Link connection is successful.

9:15:28 : Part Number: FlashSize: 256KB
9:15:28 : Target device connection successfulh!

Current Time: 2023/3M6 9:16:24 All Rights reserved by Artery Technology Co.Lid

® Click “Download”, a “Download Form” will pop out displaying sLib-related settings parameters.
Choose “sector 2” as a start sector, “sector 4” as an instruction start sector, and “sector 5” as
an end sector. Then, set a password 0x55665566 (customizable) for enabling sLib, and check

“Enable sLib” option and click “Start download”. In this way, it is ready for you to start
programming and enable sLib, as shown in Figure 23.

2024.03.07

24

Ver 2.0.0

’I?F ? AT32A423 Security Library Application Note

Figure 23. sLib settings parameters

& pownLoad Form - *

Extra options
Erase options

Erase the sectors of file size ~

Verify

[] Disable FAP before download
[] Enable FAP after download

High level access protection i [] Jumpto the user program

] write user system data [Button free mode

sLib settings Software serial number({SN)

sLib status: Disable

Enable sLib sLib position
sLib enable password [Dx | 55665566 Start sector Sector?—0x08001000 ~
Disable sLib before download INSTR start spctor Sector4—0x08002000 -~
sLib disable password Ox | 55665566 End sector Sector5-0x08002800 ~
Disable sLib
Start Download Close

For details about ICP Programmer, refer to ICP Programmer User Manual.
(2) Use “slib_enable()” function in main.c

Executing “slib_enable()” once after successful low-pass filter function test can allow users to
enable sLib feature. The function “slib_enable()” can be executed by simply enabling “#define
USE_SLIB_FUNCTION” in main.c.

2024.03.07 25 Ver 2.0.0

AR

AT32A423 Security Library Application Note

3.4.4 Project _LO flow chart
In this example, FIR low-pass filter calculates the input signal “testinput_f32_1kHz_ 15kHz” (mixed
signal of 1KHz and 15KHz sine waves) and outputs a 1KHz sine-wave data and stores it at
“testOutput”. Then this output data will be compared with MATLAB-calculated data stored at
“refOutput”. If error is lower than expected (signal to noise ratio SNR is greater than pre-defined
threshold), a green LED on the evaluation board will start blinking; otherwise, a red LED will start
blinking. Figure 24 shows a flow chart of Project_LO.
Figure 24. Project_LO flow chart
>< Start)
LED? toggle |
continuously
No
Execute . User button
system rest to activate Pressed ?
SLIB)
T yes
v
Execute
Green LED4 on FIR filter
3 seconds
test
A
Yes
SLIB Check
Operate FIR test
uccessfully? result
Success
SLIB
No Enable SLIB already
enabled?
Yes
Green LED4 toggle
in infinite loop
D 7 1 S . O L]
Ver 2.0.0

2024.03.07 26

<[

? AT32A423 Security Library Application Note

3.45

2024.03.07

To run this example code, follow the procedures below:

(1) Use Keil® pvision to open Project_LO under
“\utilities\AT32A423_slib_demo\project_I0O\mdk_v5\’, and start compiling.

(2) Prior to download, first check whether sLib or read/write protection (FAP/EPP) is enabled for
the AT-START-A423 evaluation board. If enabled, use ICP tool to unlock this protection before
starting download.

(3) After successful download and execution, LED3 on the board will keep blinking.
(4) Press “USER” button on the board to start low-pass filter operation.

(5) Compare operation results. If correct, green LED4 will start blinking; otherwise, red LED2 starts
flashing.

(6) On the premise that operation results are correct, if USE_SLIB_FUNCTION in main.c is
already defined and sLib is not enabled, then the slib_enable() will be executed to set sLib. If
sLib settings failed, red LED2 will be always ON; If successful, a green LED4 will flash for
about 3s and start to perform system reset to enable sLib. Next, program returns to step (3).

How to generate header files and symbol definition files

Both header file and symbol definition file are required for Project_L1 to call FIR low-pass filter
functions. In the example, header file refers to the “fir_filter.h” in the main.c.

How to generate symbol definition file depends on toolchains used.

Use Keil® pvision to generate a symbol definition file

Proceed as follows:

® Go to Options for Target - Linker window.

® In “Misc controls column (as shown in Figure 25), add the command “--

symdefs=fir_filter_symbol.txt”.

Figure 25. Keil Misc controls option

kA Options for Target 'project 0" X
Deviee | Target | Dutput | Listing| User | C/C++ |hsn Linker |Debug | Ueilities |
™ Use Memory Layout from Target Dialog ¥/0 Base: ’7
[~ Make RW Sections Position Independent R/0 Base: ’W
[Make RO Sections Position Independent R/ Base ’W

™ Dont Search Standard Libraries
Iv¥ Report ‘might fail' Conditions as Emors

dizable Wamings: |

Scatter | \slib-wxo sct j |:| Edit...
File:
]
Misd |-symdefs=fir_fiter_symbal tu] |
controls
Linker |-cpu Cortex-M4fpsp "o -
control |-strict —scatter " \slib-wxo sct”
string A
0K | Cancel | Defaults | Help |

® After compiling the whole project, a symbol definition file named “fir_filter_symbol.txt” is
created under “project_I0\mdk_v5\Objects”.

27 Ver 2.0.0

ll?l_ ? AT32A423 Security Library Application Note

® Such symbol definition file contains all symbol definitions related to the project, and thus some
of them should be removed so as to reserve low-pass filter function definitions that will be used
by end users. The modified “fir_filter_symbol.txt” is shown below.

Figure 26. Modified fir_filter_symbol.txt

0x08002001 T FIR lowpass filter

Use IAR to generate symbol definition files
Proceed as follows:
® Go to Project->Option->Build Actions.

Figure 27. IAR Build Actions option

, |

Categony:

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler . .
Fre-build command line:
Cutput Converter [:]
Custom Build
Linker | FTOOLEIT _DIEF\binhisymexport. exe ——edit "FPROT _DIEShst. [1:]
Debugger
Simulator
CADI
CMSIS DAP
GDB Server
I-jet/ITAGjet
JHink1-Trace
TI Stellaris
Nu-Link
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET
TIXDS

Euild Actions Configuration

QK] [Cancel

® Add the following command in the Post-build command line

$TOOLKIT_DIR$\bin\isymexport.exe --edit "$PROJ_DIRS$\steering_file.txt"
"$TARGET_PATHS$" "$PROJ_DIRS$\fir_filter_symbol.0"

® The “fir_filter_symbol.o” refers to a symbol definition file. The “steering_file.txt” stored under
“project_IO\iar_v8.2” is used to select which symbols of functions need to be created. Then edit
them according to the contents in the sLib, as shown in Figure 28 in which “show” is used to
select a function command.

Figure 28. Edit steering_file.txt

show FIR lowpass filter

2024.03.07 28 Ver 2.0.0

<[

? AT32A423 Security Library Application Note

3.5

3.5.1

2024.03.07

Project_L1: example for end users

Project L1 example needs to use FIR low-pass filter functions that are debugged in Project LO and
programmed into AT32A423’s Flash memory with sLib enabled.

Based on header file, symbol definition file and Flash memory map defined in Project_LO, end
users are able to do the following on the basis of Project_L1 example:

® Create an application project

® Introduce header file and symbol definition file from Project_LO into its project
® Call FIR low-pass filter functions

® Develop and debug user programs

Cautions:

Project L1 must use the same toolchains and the same version of compiler as those of Project L0
as differences between software versions may cause incompatibility issue, which in turn makes it
impossible to use codes from Project_LO.

For example, Project_LO uses Keil® pvision V5.36.0.0, so does Project_L1.

Create a user project

Considering that some Flash memory sectors have been occupied by sLib area enabled in
Project_LO, the addresses in which Project_L1 codes are stored must be configured taking into
account Flash memory map in Project_LO.

Figure 13 shows Flash memory map used in this example, where sector 2 to sector 5 are owned by
sLib. It is necessary for end users to separate such sLib area (sector 2 to sector 5) from other
areas through linker control file, so as to prevent codes from being placed into sLib.

Keil® pvision: scatter file

Based on the “end_user_code.sct” file under “project_I1\mdk_v5\’, the users can divide main Flash
memory into two segments. The area in between is sLib area. Besides, the space after the address
0x2000B000 is reserved for RAM, as shown in Figure 29.

Figure 29. Modified scatter file

LR_IROM1 0x08000000 0x00001000 { ; load region size_region
ER_IROM1 0x08000000 0x00001000 { : load address = execution address
% o0 (RESET, +First)
#(InRoot$$Sections)
}.:‘L\'Y (+R0)
RW_IRAM1 0x20000000 0x0000BO00 { ; RW data

.ANY (+RW +ZI)

: 0x2000B000 ~ 0x2000BFFF RAM reserved for SLIB code

; 0x08001000 0x08002FFF is SLIB area

LR_IROM2 0x08003000 0x0003D000 { ; load region size_region
ER_IROM2 0x08003000 0x0003D000 { ; load address = execution address
.ANY (+RO)
}
29 Ver 2.0.0

AR

AT32A423 Security Library Application Note

3.5.2

KA Options for File “fir_filter_symbal.txt" @
Froperties |
R | \fir_filter_symbaol td|
File Type| [Object fiie | I Include in Target Buid
Size! i 7Bt W
last change: |F|1' May 21 11:14:16 2021 v
o
Stop on Exit Code: |Not specified J 7
Custom Arguments: |
Memory Assignment:
Code / Const |:dEfau|l> j
Zero Initiglized Data: |<dafau|t> j
Cther Data: |=dafault> ﬂ
0K | Cancel Tefaults Help
e —— - S . .. S]

2024.03.07

IAR: ICF file

The users can refer to the following content in the “enduser.icf” file which is stored under

“project_I1\iar_Vv8.2\".

Figure 30. Modified icf file

— mem: [from __ICFEDIT region_ SLIB_RAM start__

define region ROM_region = mem: [from _ ICFEDIT region ROM start to _ ICFEDIT region ROM_end]
—mem: [from __ICFEDIT region_SLIB_start__ to _ ICFEDIT region_SLIB_end_];

define region RAM_region = mem: [from __ ICFEDIT region RAM_start__ to __ ICFEDIT region_RAM end__]
to _ ICFEDIT region_SLIB_RAM end_]:

Add symbol definition file into project

The symbol definition file “fir_filter_symbol.txt” which is created in Project_LO must be added to
Project_L1 so that it can be correctly compiled and linked to sLib codes.

Add a symbol definition file in Keil® pvision environment
Add the “fir_filter_symbol.txt” into project, as shown in Figure 31.

Figure 31. Add symbol definition file in Keil

L1 user

Ld bsp

{ 1 firmware
[d crnsis

= L—Fufilter
_1 fir_filter_symbol.td

[readme

After adding this file into “fir_filter” group, its file type must be changed into Object file, instead of its

original text format.

Change it as follows:

Figure 32. Change symbol definition file to Object file

30

Ver 2.0.0

?r ? AT32A423 Security Library Application Note

Add symbol definition file in IAR environment

Add the “fir_filter_symbol.o” file into “fir_filter” group, as shown in Figure 33:

Figure 33. Add symbol definition file in IAR

2 @ project_I1 - at_start ...
M bsp)
B cmsis ™

—L':_‘ 'Fir'_filh:ur
\i [fir_filter_symbol.o
' = a

M readme
B user ™
B Cutput

3.5.3 Call sLib functions

After “filter.h” file is referenced by main.c and symbol definition file is successfully added into
project, it is now ready to call low-pass filter functions from sLib area

FIR_lowpass_filter(inputF32, outputF32, TEST_LENGTH_SAMPLES);

With:

® inputF32: pointer to data table storing input signals

® outputF32: pointer to data table storing output signals

® TEST LENGTH_SAMPLES: the size of signal samples to be processed

3.5.4 Project_L1 flow chart

Project_L1 flow chart is shown in Figure 34:
® | ED3 will start blinking upon execution;
® Press “USER” button on AT-START board to start operating FIR_lowpass_filter();

® |[f operation result is correct, greed LED4 starts flashing, if failed, read LED2 starts flashing.

2024.03.07 31 Ver 2.0.0

ll?l_ ? AT32A423 Security Library Application Note

Figure 34. Project_L1 flow chart

L)
i

LED3 toggle
continuously

User button
Pressed ?

yes

Execute
FIR filter
test

Check
FIR test
result

Green LED4 toggle

N @—Success
in infinite loop

3.5.5 sLib protection in debug mode

Considering the fact that end users need to debug codes during application development, here we
use Keil® pvision as an example to demonstrate how to prevent sLib codes from being read in
debug mode.

® Open Project_L1 and recompile;
® Click “Start/Stop Debug Session” to enter debug mode;

® In "Disassembly” window, right click and choose “Show Disassembly at Address”, as shown in
Figure 35.

2024.03.07 32 Ver 2.0.0

AR

AT32A423 Security Library Application

Note

Figure 35. “Show Disassembly at Address” window

|+ | =

| = == | L=y mirstaterse

v ok FT| ML W VLY R [T N

Des=as-0-3- 8- 3-8 2-

@ Disassembly LN -]
- Ox0B003ESZ 4770 BX 1r ~
b 94: AT32_Foard Init():
as:
96: /% Configure Flash to generate ||V | Mixed Mode error occur
E0x08003E54 2504 cHp r0, #0 Assembly Mad
0x08003ES6 D106 BIE 0x080 BELEJORE
37: Inshle_Flash_INTi): Address Range »
96:
5g: Show Disassembly at Address..
100: /% Wait for KEY Button to be p ST G
0x08003ES8 4904 LDR ri, [p unto G) .
0x0B003ESA 6809 LDE I 1) oo e =
12; ?hllE (AT3Z_BUTTON_State (BUTTCN, Insert/Remove Breakpoint
0Ox08003ESC FOS10104 ORRS ri,r1 O Enable/Disable Breakpoint Ctrl+F9
0x08003E6D 4408 LDR rz, [p
Al oxosoosesz eo11 SR e Insert Tracepoint at ‘0x08003E54'... 3
104: Delay ws (300} Enable/Disable Tracepoint
108: 3
106 Inline Assembly...
107: /% Turn Off LED3 */ Load Hex or Object file...
0x08003E64 EOOS 0x080
0x0B00IE66 4907 LOR £1, 00 instruction Trace v o
7l Execution Profiling » >
] main.c T® Insert/Remove Bookmark Ctrl=F2 Z =
8 B callStack 3y copy CtilsC LN -]
L Lib V1l.x.x\4Utilities)|iT32F4034 S Name Tocaton/Vo Type

Figure 36. “Show Code at Address” setting

® Enter address 0x08002000, which is the start address (sector 2) of SLIB_INSTRUCTION.

Show Code at Address

2]

Address:

|m|:-s[:-[:-2[:-[:-|:1

Go To | ‘

You can see that the address starts with 0x08002000, and all codes are OxFFFFFFFF.

2024.03.07

Figure 37. View code

—:0x08002000 FFFFFFFF DCD
0x08002004 FFFFFFFE DCD
0x08002008 FFFFFFFE DCD
0x0800200C FFFFFFFE DCD
0x08002010 FFFFFFFE DCD
0x08002014 FFFFFFFE DCD
0x08002018 FFFFFFFE DCD
0x0800201C FFFFFFFE DCD
0x08002020 FFFFFFFE DCD
0x08002024 FFFFFFFE DCD
0x08002028 FFFFFFFE DCD

O0xFFFFFFFF
OxFFFFFEFEF
OxFFFFFEFEF
OxFFFFFEFEF
OxFFFFFEFEF
OxFFFFFEFEF
OxFFFFFEFEF
OxFFFFFEFEF
OxFFFFFEFEF
OxFFFFFEFEF
OxFFFFFEFEF

33

® Similarly, in “Memory” window, enter address 0x08002000 and return all OXFF.

Ver 2.0.0

’I?F ? AT32A423 Security Library Application Note

Figure 38. View code in Memory window

Memory 1

Address: |E08002000

0=x08002000: FF F
O=x08002022: FF F
0=x08002044: FF F
O=x08002066: FF F
O0=x08002088: FF F
Ox0800208R: FF F
0=x080020CC: FF F
Ox080020EE: FF F.
0=x08002110: FF F

® In “Memory” window, enter “0x08001000” (the start address (sector 2) of SLIB_READ_ONLY).
Because this area is readable by D-Code bus, we can see their original data.

Figure 39. View SLIB_READ_ONLY start sector in Memory

Address: |(08001000

Ox08001000: EBES E1 EE BA 12 22 DO BA 00 00 00 00 F7 55 72 3B CF 4E 04 3C 58 C2 OB
Ox08001022: 0B BD 9C A3 08 BD 00 00 00 00 DA 82 8A 3D FO DBE 1B 3E S5F 46 &4 3E 0@
0=x08001044: OA 82 8A 3D 00 00 0O 00 SC A3 08 BD &8 DC OB BD SE 85 BE BC 00 00 00
Ox080010€6: 72 3B 00 00 00 00 12 22 DD BA ES E1 EE BA FF FF FF FF FF FF FF FF FF

0x08001088: FF
Ox080010RA%: FF
0x080010CC: FF

In “Memory” window, when you click data in the 0x08002000 twice to try to modify them; the
EPPERR bit in the FLASH_STS register will be set to 1 as a warning, indicating that they are write-
protected.

Figure 40. SLIB write protection test

=-5TS 000000010
ODF r
EPPERR
PRGMERR |I~
OBF r

If write protection error interrupt is enabled, it will enter interrupt routine.

Figure 41. Write protection error interrupt

R B o

115 void FLASH IRQHandler (void)
116 2 {
I 117 | irf (flash flag get (FLASH EPPERR_FLAG))
1188 {
119 flash flag clear (FLASH EPPERR FLAG) :
120 delav_ms (500) :
121 |}
122 |}

Ll alal

2024.03.07 34 Ver 2.0.0

1=l

? AT32A423 Security Library Application Note

4

Integrate and download codes of solution provider
and user

After the completion of code design on both solution providers and end users, these codes should
be downloaded into the same MCU device. In this scenario, data security issue should be taken
into account. In the subsequent sections, two download procedures based on Project_LO and
Project_L1 are recommended as a reference. The procedures involves AT-Link offline download
mode, with its details being described in ICP user guide and AT-Link user manual.

41 Write code separated on solution provider and end user
First, solution provider programs sLib codes into MCU; secondly, end user programs application
codes into MCU, as shown below:

(1) Method A
The solution provider uses ICP to save the compiled sLib codes as BIN or HEX file.
First download the whole project to MCU (do not configure sLib, FAP, etc. at this point), then
read sLib code (address from 0x08001000 to 0x08002FFF) through memory read function.
Finally, in ICP tool, click “File”, and choose “save flash data as” to save data as BIN or HEX. In
Figure 42 below, slib.bin is a BIN file.
Figure 42. Save SLIB code
[Artery ICP Programmer V3.0.07 - X
[File | J-Link settings AT—LiTk settings Target Language Help
Save file as ... |3
T3 FlashSize: 256KB
T A
e w45 S
Extra configuration
Memory read settings
Addresd Dx Read size gx Data bits |32 bits ~
File info
Mo. File name File Size Address range(0x) Add
1 project_l0.hex 9660 08000000-0800045F,08001000-08001073,08(| pelete
< >
Flash CRC File CRC verify Download
Flashinfo File:project_I0 hex
Address range [0=08001000 0x08002FFF] checksum: 0x001EFS55
Address 1] 4 8 e ASCI ad
Method B
The solution provider uses the compiled project to directly generate BIN file.
Choose a section of sLib area, for example, in Keil project, in “User” option, add “fromelf.exe --bin --
output .\Listings\@L.bin !L” to produce a corresponding BIN file, that is, add a suffix “.bin” to this
sLib file.

2024.03.07

35 Ver 2.0.0

ART

5

AT32A423 Security Library Application Note

In this example, ER_SLIB_INSTRUCTION.bin and ER_SLIB_READ_ONLY .bin correspond to
SLIB-INSTRUCTION file at 0x08002000 and SLIB-READ-ONLY file at 0x08001000, respectively.

Figure 43. Change SLIB code to BIN file

2024.03.07

TR v rm gt m_s e on

Devics | Target | Output | Listing User [cicr | aam

Command tems User Command
(=) Before Compile C/C++ File
[~ Run=1
[~ Run#2
[=- Before Build/Rebuild
[~ Run#l
™ Run#2
- After Build/Rebuild
¥ Run#l
I~ Run#2

fromelf.exe --bin --output \Listings\@L.bin IL

| Linker | Debug | Utilities |

. Stop on Bx... 5.
l_ﬂ Mot Specified [T
3] Not Specified ™
|| ER_IROM1
3] Not Specified T~
l_ﬂ Mot Specified [T L FR_IRIHIM:‘
3] Mot Specified T | ER_SUE_'NSTRUCT'ON
3] Not Specified T~
|_||[ER_SLIE_READ_OMLY

(2) Use ICP tool to program .bin file into MCU online.

Figure 44. ICP programs MCU online

File

ct

AT Link

J-Link settings

Disconne | |PartNumber: Al

AT-Link settings ~ Target Language Help

FlashSize: 256KB |

AT-Link-Pro FW:V2.2.2 AIN: 4E100108DF25AF25
| | AT-Link SN: - 0180044300C0D4590507A907 (WinUSB)

Extra configuration

Memory read settings

AR
#15h

Flashinfo File:ER_SLIB_READ_ONLY.bin
Address range:[0x08001000 0x08001073] checksum: 0x00002C29

Address [4 8 = AsCI
BAEEE1B9 BAD02212 00000000 3B7255F7 SEE. 8
0x08001010 3CO44ECF 3C0BC253 30000000 BCBESSIE i 0axr=. SIHE
0x08001020 BDUBDCES BD03A39C 00000000 3D5AS204 IR0%.. 8=
0x08001030 3E1BDBFO 3EB4465F 3E804106 3E64465F Fr0>_Fd-0A€=_Fd=
0x08001040 3E1BDBFO 3DBAB20A 00000000 BDOBA3SC Fro-fg=. 52

[Download Form

Extra options
Erase options

Erase the sectors offile size

Verify

[] Disable FAP befare download
[] Enable FAP after download

High level access protection

[Jump to the user program

[Button free mode

Address 0x |08001000 Read size 0x 2000 Databits | 32 bits ~ Read
[Write user system data
File info
il i i Add
1 ER_SLIB_INSTRUCTION bin 280 08002000-08002117 Delete
2 ER_SLIB_READ_ONLY.bin 116 08001000-08001073
sLib settings Software serial number(SN)
sLib status: Disable
Flash GRC File CRC verify EnabiesiD

sLib enable password Ox | 55665566

sLib position

Start sector

[] Disable sLib before download
sLib disable password Ox | 55665566

Disable sLib

INSTR start sef

End sector

9:42:46 : [project_I0.hex] checksum: 0x000E47F2

"

Start Download

Main Flash

Sector2-0x08001000
or Sector4—0x08002000

Sector5-0x08002800

Close

(3) Alternatively, use ICP tool to configure an offline project and save it to AT-Link, then program it
into MCU through AT-Link offline mode, and save this offline project, as shown in Figure 45.

36

Ver 2.0.0

:'=/| ?I_

5

AT32A423 Security Library Application Note

2024.03.07

Figure 45. AT-Link programs MCU offline

[AT-Link Setting - x

AT-Link seftings AT-Link offiine config settings AT-Link offline download status

Offline project w Delete Creat
Projectname |slib_project Device |AT32 ~ || AT32 b
) Eile name Eile gize Addre rangel0x) Storage locat.. Add
1 ER_SLIB_INSTRUCTION.bin 280 08002000-08002117 Delete
2 ER_SLIB_READ_ONLYbin 116 08001000-08001073
< >
Erase option | Erase the sectors offile size ~

[] Download times I:I Veerify

[Encryption transmit

[Resetand run Download interface | SWD -

[write user system data |

[] Enable FAP after download [Boot memaory AP mode

Access pratection ~ Key@) [| (oxa35FeD24)

Software serial number{SN) SPIM settings SLib settings Bluetooth module Mac setting

Enable sLib Taim F1ash

sLib enable password Ox 55665566 Start sector Sector2—0x08001000 w

[] Disable sLib before download INSTR start sector | Sector4—-0x08002000 ~

sLib disable password 0x I:I End sector Sector5—0x08002300 0
Load parameters Save parameters

Open project file Save project file Save project to AT-Link Close

(4) After step (2) or (3), a MCU device with the programmed sLib code is delivered to end user. In
this case, sLib is already enabled, and the end user can program application code via online or
offline mode to MCU to finish the rest of the process. Figure 46 gives an online programming

example.

37

Ver 2.0.0

AR[R

AT32A423 Security Library Application Note

Figure 46. End user programs code to MCU

ct

AT-Link

File J-Link settings ~ AT-Link settings Target

Disconne | |[Part Number: AT32

Language Help

Flash Size: 256KB. |

_l

AT-Link-Pro FW:V2.2.2 AIN: 4E100108DF25AF25
AT-Link SN: 0180044300C0D4590507A907 (WinUSB)

3

[bownload Form

Extra options
Erase options

Erase the sectors offile size

Verify

VRS

Extra configuration

Memory read settings

Flashinfo File:project_I1.hex
Address range:[1x08000000 0x08000478]

Flash CRC

Address range:[0x08003000 0x08004DAF] checksum: 0x000CEEEE

[Disable FAP before download

[] Enable FAP after download

High level access protection ~

Enable sLib
sLib enable password 0x | 55665566

[] Disable sLib before download

[Jump to the user program

sLib position

Start sector

Address Ox |08002000 Read size 0x 00000118 Data bits |32 bits ~ Read
[write user system data [Button free mode
File info
- - Add
1 project_I1.hex 8748 ﬂSﬂﬂﬂﬂﬂﬂ—ﬂSﬂﬂﬂd»?ELﬂSﬂﬂEﬂﬂﬂ—ﬂSﬂﬂADAF| Delete
sLib settings Software serial number(SN)
< > sLib status: Enable

Wain Flash

Sector2—-0x08001000

INSTR start sector Sector4—-0x08002000

—_— 5 vy 5 S —= = sLib disable password 0 End sector Seclor5—0:08002800 ~
20001598 08003020 08003211 08003209 %.-0.02.2 TR

0x08000010 08003200 080031E9 080032AD 00000000 2.2.7..

0x08000020 00000000 00000000 00000000 08003215 PSSRSO = - l

0x08000030 080031ED 00000000 08003213 08003217 7...02.02. :

0x08000040 08003047 08003047 08003047 08003047 G0..G0..G0..GO.. 1

vl |
r(L,nnnnnnrn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn n An An An N
Start Download

[\project 1o bin\ER_SLIB_READ_ONLY.bin] File download successfully! ! ~

4.2 Combine solution provider code with end user code

SLIB code from solution provider and end user code are integrated into an offline project, which is

then downloaded into MCU via AT-Link offline mode.

(1) The solution provider creates a BIN format of sLib code according to the section 4.1.

(2) The solution provider uses ICP to create an offline project and save it to PC. Multiple
parameters such as “download times”, “project bonded to AT-Link”, “enable FAP after
download” and others can be configured according to actual needs, as shown in Figure 47.

Note: The offline project itself is encrypted. To enhance data security, the slib.bin can be changed into an
encrypted slib.benc file for solution provider before being added to an offline project. But in this case, such
offline project can only be accessible to the corresponding AT-Link with passkey.

2024.03.07

38

Ver 2.0.0

’I?F ? AT32A423 Security Library Application Note

Figure 47. Create offline project

[AT-Link Setting — x

AT-Link settings AT-Link offline config settings AT-Link offline download status

Offline project ~ Delete

Creat
Projectname |slib_project Device AT32 | AT32 &
No. __File name File size __Address range(d Storage locat... Add
1 ER_SLIB_INSTRUCTION bin 280 08002000-08002117 Delete
2 ER_SLIB_READ_OMLYbin 116 03001000-08001073
< >
Erase option | Erase the sectors of file size i

[Download times l:l Verify

[] Encryption transmit

[Resetand run Download interface | SWD ~

[] write user system data ‘

[] Enable FAP after download [] Boot memory AP mode

Access protection o ey | | (oxA35FsD24)

Software serial number(SN) SPIM settings SLib settings Bluetooth module Mac setting

Enable sLib Wain Flash
sLib enable password 0x 55665566 Start sector Sector?—0x08001000 > .
[+ AT-Link project file settings o) [
[Disable sLib before download INSTR start sector | Sector4—0x08002000 4
sLib disable password 0x I:I End sector Sector5—0x08002800 ~
B This project is only used at the specified AT-Link.
Load parameters Save paramelers AT-Link SN : CFD275220040B56D0117C502

This project is only used once.

AT-Link AIN : FOOFA432D013A913
Open projectfile Save project file Save project to AT-Link Close

(3) For end users, they can use ICP to open such offline project, and click “Add” to add user
application code into such project, and save it to PC or directly to AT-Link, and then perform
offline download to finish the whole operation. Figure 48 shows how to add a project file

Note: To avoid code disclosure and cracking, it is forbidden to change parameters settings while adding code

into an offline project. Based on this consideration, it is necessary for solution providers to configure final
settings in advance.

S S y 1]] . S
2024.03.07 39

Ver 2.0.0

AR

AT32A423 Security Library Application Note

Figure 48. Add project file

[AT-Link Setting

AT-Link settings AT-Link offline config settings AT-Link offline download status

Offline project W Delete Creat
Projectname |slib_project Device |AT32 AT32
MNo. File name Filesize Address range(0x) Storage loca Add
1 ER_SLIB_INSTRUCTIOM.bin 280 02002000-08002117 Delete
2 ER_SLIB_READ_OMNLYbin 116 023001000-08001073
3 project 11.hex 1148 023000000-0800047B R
< >
Erase option |Erase the sectors of file size

Access protection Key
Software serial number{SN) SPIM settings SLib settings Bluetooth module Mac setting
sLib position Main Flash
=nable password Ox b Start sector Sector2—0x08001000
Sectord—0x08002000

Sector5—0x08002800

Load parameters

Coe mararatare
Save parameters

— e—
2024.03.07

- S . ..
40

Open project file Save project file Save project to AT-Link Close
This projectis only used once.
This projectis only used at the specified AT-Link.

——

Ver 2.0.0

1?[? AT32A423 Security Library Application Note

5 Revision history
Table 2. Document revision history
Date Version Revision note
2024.03.07 2.0.0 Initial release.

2024.03.07 41 Ver 2.0.0

<[

? AT32A423 Security Library Application Note

2024.03.07

IMPORTANT NOTICE — PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services; ARTERY assumes no liability for

purchasers’ selection or use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous
representation in any forms. If any part of this document involves third party’s products or services, it does NOT imply that ARTERY
authorizes the use of the third party’s products or services, or permits any of the intellectual property, or guarantees any uses of the third

party’s products or services or intellectual property in any way.

Except as provided in ARTERY'’s terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty,
relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fithess for a
particular purpose (based on the corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other
intellectual property right.

ARTERY'’s products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have
specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements
on product function safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other
applications that may cause injuries, deaths or property damages. Since ARTERY products are not intended for the above-mentioned
purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks
caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with

all statutory and regulatory requirements regarding these uses.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will
immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and
ARTERY disclaims any responsibility in any form.

© 2024 ARTERY Technology — All Rights Reserved

42 Ver 2.0.0

	1 Overview
	2 Principles
	2.1 sLib application principles
	2.2 How to enable sLib protection
	2.3 How to disable sLib protection
	2.4 Set and run sLib
	2.4.1 Don’t set interrupt vector table as sLib instruction area
	2.4.2 Relevance between sLib code and user code

	3 Example code in sLib
	3.1 Requirements
	3.1.1 Hardware requirements
	3.1.2 Software requirements

	3.2 Example projects
	3.3 sLib protected code: FIR low-pass filter
	3.4 Project_L0: example for solution providers
	3.4.1 Generate execute-only code
	3.4.2 Set sLib address
	3.4.3 How to enable sLib function
	3.4.4 Project_L0 flow chart
	3.4.5 How to generate header files and symbol definition files

	3.5 Project_L1: example for end users
	3.5.1 Create a user project
	3.5.2 Add symbol definition file into project
	3.5.3 Call sLib functions
	3.5.4 Project_L1 flow chart
	3.5.5 sLib protection in debug mode

	4 Integrate and download codes of solution provider and user
	4.1 Write code separated on solution provider and end user
	4.2 Combine solution provider code with end user code

	5 Revision history

