
AT32A423 Security Library Application Note

2024.03.07 1 Ver 2.0.0

AN0209

Application Note

AT32A423 Security Library Application Note

Introduction
This application note is written to help users with a better understanding of the application
principles, the use of software resources and example codes relating to the security library of
AT32A423 series.

Applicable products:

Part number AT32A423xx

AT32A423 Security Library Application Note

2024.03.07 2 Ver 2.0.0

Contents

 Overview ... 7

 Principles .. 8

 sLib application principles ... 8

 How to enable sLib protection .. 10

 How to disable sLib protection ... 11

 Set and run sLib .. 11

 Don’t set interrupt vector table as sLib instruction area ... 12

 Relevance between sLib code and user code ... 13

 Example code in sLib .. 15

 Requirements ... 15

 Hardware requirements .. 15

 Software requirements ... 15

 Example projects .. 15

 sLib protected code: FIR low-pass filter .. 16

 Project_L0: example for solution providers ... 17

 Generate execute-only code .. 17

 Set sLib address ... 19

 How to enable sLib function ... 23

 Project_L0 flow chart .. 26

 How to generate header files and symbol definition files .. 27

 Project_L1: example for end users ... 29

 Create a user project .. 29

 Add symbol definition file into project... 30

 Call sLib functions .. 31

 Project_L1 flow chart .. 31

 sLib protection in debug mode ... 32

 Integrate and download codes of solution provider and user 35

 Write code separated on solution provider and end user .. 35

 Combine solution provider code with end user code .. 38

AT32A423 Security Library Application Note

2024.03.07 3 Ver 2.0.0

 Revision history ... 41

AT32A423 Security Library Application Note

2024.03.07 4 Ver 2.0.0

List of tables

Table 1. AT32A423 series Flash memory capacity .. 9

Table 2. Document revision history .. 41

AT32A423 Security Library Application Note

2024.03.07 5 Ver 2.0.0

List of figures

Figure 1. Flash memory map with security library ... 9

Figure 2. Example of literal pool (1) ... 12

Figure 3. Example of literal pool (2) ... 12

Figure 4. Example of sLib function calls a function in the user code area .. 13

Figure 5. Example of user-defined function ... 14

Figure 6. Flow chart example .. 15

Figure 7. Application diagram .. 16

Figure 8. FIR low-pass filter ... 16

Figure 9. Enter Option window in Keil ... 17

Figure 10. Check Execute-only Code in Keil ... 18

Figure 11. Enter Option window in IAR .. 18

Figure 12. IAR C/C++ window ... 19

Figure 13. Flash memory map and RAM segment in the example ... 19

Figure 14. Linker settings in Keil ... 20

Figure 15. Keil scatter modification ... 21

Figure 16. RAM address change in Keil .. 21

Figure 17. Constant address change in Keil ... 21

Figure 18. SLIB address definition in icf file .. 22

Figure 19. Address distribution in icf file .. 22

Figure 20. Modify RAM in icf file .. 23

Figure 21. Modify sLib constant address in IAR .. 23

Figure 22. ICP Programmer operation .. 24

Figure 23. sLib settings parameters .. 25

Figure 24. Project_L0 flow chart .. 26

Figure 25. Keil Misc controls option ... 27

Figure 26. Modified fir_filter_symbol.txt ... 28

Figure 27. IAR Build Actions option ... 28

Figure 28. Edit steering_file.txt .. 28

Figure 29. Modified scatter file... 29

Figure 30. Modified icf file .. 30

Figure 31. Add symbol definition file in Keil ... 30

Figure 32. Change symbol definition file to Object file .. 30

Figure 33. Add symbol definition file in IAR ... 31

AT32A423 Security Library Application Note

2024.03.07 6 Ver 2.0.0

Figure 34. Project_L1 flow chart .. 32

Figure 35. “Show Disassembly at Address” window ... 33

Figure 36. “Show Code at Address” setting ... 33

Figure 37. View code ... 33

Figure 38. View code in Memory window .. 34

Figure 39. View SLIB_READ_ONLY start sector in Memory .. 34

Figure 40. SLIB write protection test ... 34

Figure 41. Write protection error interrupt ... 34

Figure 42. Save SLIB code .. 35

Figure 43. Change SLIB code to BIN file .. 36

Figure 44. ICP programs MCU online ... 36

Figure 45. AT-Link programs MCU offline .. 37

Figure 46. End user programs code to MCU ... 38

Figure 47. Create offline project .. 39

Figure 48. Add project file .. 40

AT32A423 Security Library Application Note

2024.03.07 7 Ver 2.0.0

 Overview

At present, as an increasing number of microcontrollers (known as MCU) require complex

algorithms and middleware solutions, how to protect core algorithms and other IP codes of solution

providers has emerged as one of the most important concerns in the field of MCU applications.

In response to this demand, AT32A423 series is equipped with a security library, known as sLib,

with the aim of preventing important IP codes from being altered or read by end user program, so

as to safeguard the rights of solution providers.

Here this document will detail the application logics behind AT32A423 series’ security library and its

software usage.

AT32A423 Security Library Application Note

2024.03.07 8 Ver 2.0.0

 Principles

 sLib application principles

 Any part of Flash memory can be designated as a security library (sLib) with password. This

sLib is used for storing critical algorithms by solution providers while the remaining memory

area can be used for secondary development by end users.

 sLib is divided into a read-only area (SLIB_READ_ONLY) and an instruction area

(SLIB_INSTRUCTION). Part of or the entire sLib can be set as read-only area or instruction

area.

 SLIB_READ_ONLY can be read through I-Code and D-Code, but it is write-protected.

 Program codes in the SLIB_INSTRUCTION area can only be fetched (only executable) by

MCU through I-CODE. They cannot be read out by reading access (including ISP/ICP/debug

mode or boot from internal RAM via D-Code, for accessing SLIB_INSTRUCTION by reading

operation will return all 0xFF.

 Codes and data within sLib cannot be erased unless a correct password is entered. Performing

write or erase operation in case of wrong password entry will trigger a warning from

EPPERR=1 of the FLASH_STS register.

 Mass erase to the main Flash memory by end users will not affect codes and data in the sLib,

meaning that programs and data in this secure area will not be erased.

 After sLib feature is enabled, users can also unlock this protection by writing a correct

password in the SLIB_PWD_CLR register. Once sLib is unlocked, MCU will erase the whole

main memory, including sLib. This kind of design is to protect program codes against leakage

even if the password set by solution providers is leaked.

Figure 1 below shows a block diagram of main Flash memory with security library. Programs and

codes stored in the security library can be called and executed by end users, but they are read-

protected.

AT32A423 Security Library Application Note

2024.03.07 9 Ver 2.0.0

Figure 1. Flash memory map with security library

USER CODE

SLIB_READ_ONLY

SLIB_INSTRUCTION

User_Code_Start@

User_Code_End@

SLIB_Start@

SLIB_End@

The size of sLib area is configured based on the sector level, and the size of each sector is subject

to the specific MCUs. Table 1 lists the main Flash memory size, sector size and its configurable

range.

When the 20 KB boot memory is defined as Flash memory extension area, it can also be

functioning as a sLib area.

Table 1. AT32A423 series Flash memory capacity

Part number Internal Flash (Byte) Sector size (Byte) Address range

AT32A423x8 64K 1K
Sector 0 ~ 63

(0x08000000 ~ 0x0800FFFF)

AT32A423xB 128K 1K
Sector 0 ~ 127

(0x08000000 ~ 0x0801FFFF)

AT32A423xC 256K 2K
Sector 0 ~ 127

(0x08000000 ~ 0x0803FFFF)

AT32A423 Security Library Application Note

2024.03.07 10 Ver 2.0.0

 How to enable sLib protection

By default, sLib setting register is not readable and write-protected. Before writing to this register,

users need first unlock the register by keying in the 0xA35F6D24 value to the SLIB_UNLOCK

register, and then check if the unlock operation is successful by checking the SLIB_ULKF bit in the

SLIB_MISC_STS register. If successful, sLib setting register can now be written.

Follow the procedures below to enable Flash memory sLib:

 Check the OBF bit in the FLASH_STS register to confirm that there is no other ongoing

programming operation;

 Write 0xA35F6D24 to the SLIB_UNLOCK register to unlock security library;

 Check the SLIB_ULKF bit in the SLIB_MISC_STS register to confirm that the unlock operation

is successful;

 Set the sectors to be protected, including the SLIB start address and end address as well as

SLIB instruction area start address, through the SLIB_SET_RANGE register;

 Wait until the OBF bit is cleared (“0”);

 Set a sLib password through the SLIB_SET_PWD register;

 Wait until the OBF bit is cleared (“0”);

 Program codes to be stored into sLib;

 Perform system reset, and reload sLib setting words;

 Read the SLIB_STS0/STS1 register to verify sLib settings.

Special attention to be paid to the following aspects:

 Both the Flash memory and Flash memory extension area can be set as sLib. See Table 1 for

the configurable sLib ranges.

 sLib codes must be programmed on a sector level, and sLib start address must be aligned with

that of Flash memory or Flash memory extension area.

 Interrupt vector table as a data type is typically placed on the first sector (sector 0) of Flash

memory. As a result, sector 0 should not be set as an instruction area of sLib.

For details on sLib setting register, please refer to AT32A423 Series Reference Manual.

For the program code on enabling sLib, please refer to “slib_enable()” in the main.c of project_l0

example case. Besides, it is also possible to set sLib through ICP or ISP programming tool, which

will be described in the subsequent sections.

AT32A423 Security Library Application Note

2024.03.07 11 Ver 2.0.0

 How to disable sLib protection

After sLib feature is enabled, it is possible for users to unlock it by writing the previously set

password in the SLIB_PWD_CLR register.

Once sLib is disabled, the device will perform mass erase on the main Flash memory, including the

contents in the sLib area.

Follow the procedures below to disable sLib:

 Check the OBF bit in the FLASH_STS register to confirm that there is no other ongoing

programming operation;

 Write the previously set password into the SLIB_PWD_CLR register;

 Perform system reset, and reload sLib setting words;

 Read the SLIB_STS0 register to verify sLib settings.

 Set and run sLib

As described in the previous sections, program codes within the SLIB_INSTRUCTION area can be

fetched (only executable) by MCU through I-Code, but they cannot be read out by means of

reading data via D-Code, so as to achieve robust protection. In other words, even the program

codes located in the SLIB_INSTRUCTION are forbidden to read data that are placed in the

SLIB_INSTRUCTION. Such data, for instance, include the likes of literal pool — compiled C

program code, branch table or constants, which will be read through D-code upon instruction

execution.

This indicates that only instructions, rather than data, can be placed in SLIB_INSTRUCTION area.

As a result, if necessary to store program codes in SLIB_INSTRUCTION area, there is a need for

users to generate execute-only code through compiler in order to prevent the generation of

abovementioned types of data

Figure 2 and Figure 3 give two examples of frequently-used literal pools and branch tables.

The “switch()” is a common jump command in C program. In Figure 2, the “sclk_source” variable

reads CRM_CFG register, and “LDR R7, [PC, #288]” is an assembly code. The program counter

(known as PC) is used to obtain the address of CRM_CFG register through indirect addressing.

The address of CRM_CFG register is stored at a nearby instruction area (also within

SLIB_INSTRUCTION) as a constant. At this point, executing “switch()” instruction will trigger data

read. If such program code exist in SLIB_INSTRUCTION area, an error will occur upon program

execution.

In Section 3, we give an example detailing how to avoid this problem through setting compiler.

AT32A423 Security Library Application Note

2024.03.07 12 Ver 2.0.0

Figure 2. Example of literal pool (1)

Figure 3. Example of literal pool (2)

 Don’t set interrupt vector table as sLib instruction area

Interrupt vector table contains entry addresses of all interrupt handlers which are readable by MCU

using D-Code. In most cases, the table is located at sector 0 with start address 0x08000000 in

Flash memory. Therefore, the following rule should be respected when designating sLib instruction

area.

 The first sector of Flash memory should not be set as an instruction area of sLib.

AT32A423 Security Library Application Note

2024.03.07 13 Ver 2.0.0

 Relevance between sLib code and user code

IP-code protected by sLib is able to call functions from a function library in the user code area. In

this scenario, IP-Code will also carry the addresses of such functions, allowing PC (program

counter) to jump to them while executing IP-Code. Once sLib is enabled, such functions’ addresses

are unchangeable. This means that these addresses in the user code area must be fixed or remain

unchanged; otherwise, PC will jump to a wrong address and fail to work. Based on this, before

setting sLib, it is necessary to place all functions relating to IP-Code in sLib to avoid such problem.

Figure 4 gives an example on how a protected Function_A() calls Function_B() in user code area.

Figure 4. Example of sLib function calls a function in the user code area

Besides, there is another commonly seen scenario in which C language standard function library is

used, such as memset() and memcpy(). If both IP-Code and user code call such functions,

aforementioned problem may occur. Despite this, here are two ways to resolve this issue.

1) Place such functions in sLib. For more information, please refer to the corresponding Keil or

IAR documents.

2) Do not to use C language standard function library in the IP-Code. If there is a need to use

them, their names must be changed. In the example below, write a “my_memset()” function to

replace the previous “memset()”.

Function_B()
{

 ;

 ;
{

Function_A()
{

 .;
Function_B();

 ;
}

User_Code_Start@

User_Code_End@
SLIB_Start@

SLIB_End@

User code area

SLIB area

Function B fixed@

AT32A423 Security Library Application Note

2024.03.07 14 Ver 2.0.0

Figure 5. Example of user-defined function

AT32A423 Security Library Application Note

2024.03.07 15 Ver 2.0.0

 Example code in sLib

This chapter offers example codes on the use of sLib alongside detailed operating procedures.

 Requirements

 Hardware requirements

 AT-START-A423 evaluation board with embedded AT32A423VCT7 microcontroller

 AT-Link debugger which is used to debug programs

 Software requirements

 Keil® μvision IDE (this example here uses μvision V5.36.0.0) or IAR Embedded workbench

IDE (this example here uses IAR V8.22.2)

 ARTERY’s ICP or ISP programming tool to enable or disable sLib

 Example projects

This application note offers two example projects demonstrating how software provider develops

IP-Code to meet end user application requirements.

 Project_L0 shows how solution provider develops an algorithm and place it into sLib

 Project_L1 shows how end users apply this algorithm

Algorithms developed in Project_L0 will be downloaded and programmed into AT32A423 device in

advance with sLib function being enabled. Meanwhile, the following information are also available

to end user programs.

 Main Flash memory map, indicating the area owned by sLib and the area that can be

developed by users

 Header files containing algorithm function definitions, for user programs to call

 Symbol definition file, containing the addresses of IP-Code functions, for users to call. See

Figure 6 below for reference.

Figure 6. Flow chart example

Software providers can refer to Project_L0 and Project_L1 to develop algorithm code for end users.

Project_L0
Programs SLIB protected code

Project_L1
Programs End User Code

Using SLIB protected functions

End user application

AT32A423 Security Library Application Note

2024.03.07 16 Ver 2.0.0

Figure 7. Application diagram

Solution- Provider

Project_l0
End-User

Project_l1

Provide pre burned
IP-CODE AT32A423 chip

Provide AT32A423 chip

 sLib protected code: FIR low-pass filter

The example here uses FIR low-pass filter algorithm from CMSIS-DSP library and sets it as sLib-

protected IP-Code. For details on FIR low-pass filter, please refer to the CMSIS-DSP-related

documents as the subsequent sections focus only on how to set sLib to protect such algorithm and

how to be called by end user programs.

In the example, the input signals of low-pass filter is from two sine wave signals with 1 KHz and 15

KHz respectively. The cut-off frequency is 6 KHz for this low-pass filter. After going through a low-

pass filter, 15 KHz signal is filtered, leaving only 1 KHz sine wave output.

Figure 8 shows a diagram of FIR low-pass filter function.

Figure 8. FIR low-pass filter

The following CMSIS DSP functions and files will be used, including

 arm_fir_init_f32()

This is used to initialize filter functions, and it is included in the arm_fir_init_f32.c.

 arm_fir_f32()

This is a main part of a filter algorithm, and it is included in the arm_fir_f32.c.

 FIR_lowpass_filter()

This is a global function of FIR low-pass filter, written on the basis of the two above functions. It is

called by end user applications. It is included in the fir_filter.c.

 fir_coefficient.c

This .C file contains coefficients used in the FIR filter. These coefficients are read-only constants. In

the example, they are placed in the read-only sLib.

In the example, FPU and DSP instructions embedded in the device are used to handle signals and

for floating point operation in order to guarantee correct operation and output signals.

FIR Low Pass Filter

Input signal Output signal

AT32A423 Security Library Application Note

2024.03.07 17 Ver 2.0.0

 Project_L0: example for solution providers

To begin with, the following procedures need to be operated:

 Compile algorithm-related functions as execute-only ones;

 Place algorithm code in sector 4 of main Flash memory;

 Place coefficients of filter functions in the sector 2 of main Flash memory;

 Execute “FIR_lowpass_filter()” in the main program to verify;

 After successful verification, set sector 4 as a sLib instruction area, and sector 2 as a read-only

sLib area. This step can be done by calling “slib_enable()” in the main program of this

example, or by using Artery ICP Programmer tool (recommended).

 Generate header files and symbol definition files used for calling low-pass filter functions by

end user programs.

 Generate execute-only code

Every toolchain offers its own setting options used to avoid the generation of literal pools and

branch table by compiler, for they may produce a format of instruction reading data when an

instruction is executed, for example, LDR Rn, [PC, #offset], etc.

For more information on literal pools and branch table, please refer to Section 2.4.

Taking Keil® μvision as an example, Keil® μvision has an “Execute-only Code” option to conduct

settings below:

Keil® μvision: use Execute-only Code option

Proceed as below:

 Choose a C file group or an individual C file. In the example, the would-be protected C files are

included in the fir_filter group.

 Right click and choose corresponding file, for example, “Option for File ‘arm_fir_f32.c’”, as

shown in Figure 9.

Figure 9. Enter Option window in Keil

 In “C/C++” window, check “Execute-only Code” option, then the “--execute_only” command is

added to the compiler control string, as shown in Figure 10 below.

AT32A423 Security Library Application Note

2024.03.07 18 Ver 2.0.0

Figure 10. Check Execute-only Code in Keil

 There are three files, i.e., arm_fir_f32.c, arm_fir_init_f32.c and fir_filter.c in

SLIB_INSTRUCTION area. All of three must be configured as execute-only code.

IAR: use “No data read in code memory” option

Proceed as follows:

 Choose a particular file from “fir_filter” group, and right click and choose “Options”.

Figure 11. Enter Option window in IAR

 In "C/C++" window, check “Override inherited settings” and “No data read in code memory”, as

shown in Figure 12.

AT32A423 Security Library Application Note

2024.03.07 19 Ver 2.0.0

Figure 12. IAR C/C++ window

 There are three files, i.e., arm_fir_f32.c, arm_fir_init_f32.c and fir_filter.c in the

SLIB_INSTRUCTION. All of three must be configured as execute-only code.

 Set sLib address

As mentioned in the previous sections, the sector 0 of Flash memory is used to store interrupt

vector tables, and thus the example case sets sLib starting from sector 2. Note that sector 4

represents sLib instruction, and sector 2 represents a read-only sLib. Figure 13 below shows Flash

memory map and RAM range distribution. The RAM segment is mainly aimed at preventing the use

of the same RAM by sLib-protected code and user code.

Figure 13. Flash memory map and RAM segment in the example

Vector table
User code

SLIB_READ_ONLY

SLIB_INSTRUCTION

0x08000000

0x08000FFF
0x08001000

0x08001FFF
0x08002000

0x08002FFF
0x08003000

User code

0x0803FFFF

User RAM

SLIB used RAM

0x20000000

0x2000AFFF
0x2000B000

0x2000BFFF

AT32A423 Security Library Application Note

2024.03.07 20 Ver 2.0.0

Keil® μvision: scatter file

Proceed as follows:

 Go to Project  Options for TargetLinker, cancel “Use memory layout from Target Dialog”

option, and then click “Edit” to open “slib-w-xo.sct” for modification, as shown in Figure 14.

Figure 14. Linker settings in Keil

 After opening “scatter file”, place an object file of the code which needs to be put in the

SLIB_INSTRUCTION area into a dedicated load area named “LR_SLIB_INSTRUCTION”, and

change its mark to “execute-only (+XO)”. This load area starts with sector 4 with a size of

sector. Meanwhile, it is necessary to reserve SLIB_READ_ONLY area and place it into a

specialized load area named “LR_SLIB_READ_ONLY”. This is to avoid compiler to store other

non-IP-Code functions into sLib.

RW_IRAM2 block ranges from 0x2000B000 to 0x2000BFFF. It is assigned to algorithm

functions of sLib, with the aim of preventing end-user projects from using the same RAM block

to cause program error.

AT32A423 Security Library Application Note

2024.03.07 21 Ver 2.0.0

Figure 15. Keil scatter modification

 With regard to the use of RAM, in addition to the abovementioned method, it is also possible to

use Keil “__attribute__((at(address)))” descriptor to place variables at a fixed address of

0x2000B000, as shown in Figure 16 below.

Figure 16. RAM address change in Keil

 Read-only sLib area starts with sector 2 (0x08001000). Constants used in FIR low-pass filter

functions should be placed at this address. In addition to the above “scatter file change”

method, it is also possible to use Keil “__attribute__((at(address)))” descriptor to place

constants at a fixed address as shown in Figure 17.

Figure 17. Constant address change in Keil

AT32A423 Security Library Application Note

2024.03.07 22 Ver 2.0.0

IAR: ICF file

Proceed as follows:

 Open “icf” file under “\project_l0\IAR_V8.2\”, then add three new load areas, as shown below.

The SLIB_RAM area from 0x2000B000 to 0x2000BFFF is reserved for algorithm functions.

Figure 18. SLIB address definition in icf file

 In ICF file, sLib area should also be reserved in order to prevent non-IP-Code functions from

being placed into sLib area by compiler. At the same time, the RAM used for IP-Code should

be reserved as well.

Figure 19. Address distribution in icf file

 For RAM used for IP-Code, it is possible to place variables at a fixed address of 0x2000B000

through IAR’s @ descriptors, or change “.icf” file as shown in Figure 20 below.

AT32A423 Security Library Application Note

2024.03.07 23 Ver 2.0.0

Figure 20. Modify RAM in icf file

 The start address for read-only sLib is sector 2 (0x08001000) which is to store constants used

for FIR low-pass filter functions. In addition to the above-mentioned ICF file modification, it is

also possible to place constants at a fixed address through IAR’s @ descriptors.

Figure 21. Modify sLib constant address in IAR

 How to enable sLib function

There are two ways to enable sLib function as follows:

(1) Use Artery ICP Programmer (recommended)

If use ICP Programmer, follow the steps below:

 Connect AT-Link to AT-START-A423 evaluation board and supply power to it

 Open ICP Programmer, select AT-Link connection, add Project_L0 example and generate

HEX or BIN files, as shown below:

AT32A423 Security Library Application Note

2024.03.07 24 Ver 2.0.0

Figure 22. ICP Programmer operation

 Click “Download”, a “Download Form” will pop out displaying sLib-related settings parameters.

Choose “sector 2” as a start sector, “sector 4” as an instruction start sector, and “sector 5” as

an end sector. Then, set a password 0x55665566 (customizable) for enabling sLib, and check

“Enable sLib” option and click “Start download”. In this way, it is ready for you to start

programming and enable sLib, as shown in Figure 23.

AT32A423 Security Library Application Note

2024.03.07 25 Ver 2.0.0

Figure 23. sLib settings parameters

For details about ICP Programmer, refer to ICP Programmer User Manual.

(2) Use “slib_enable()” function in main.c

Executing “slib_enable()” once after successful low-pass filter function test can allow users to

enable sLib feature. The function “slib_enable()” can be executed by simply enabling “#define

USE_SLIB_FUNCTION” in main.c.

AT32A423 Security Library Application Note

2024.03.07 26 Ver 2.0.0

 Project_L0 flow chart

In this example, FIR low-pass filter calculates the input signal “testInput_f32_1kHz_15kHz” (mixed

signal of 1KHz and 15KHz sine waves) and outputs a 1KHz sine-wave data and stores it at

“testOutput”. Then this output data will be compared with MATLAB-calculated data stored at

“refOutput”. If error is lower than expected (signal to noise ratio SNR is greater than pre-defined

threshold), a green LED on the evaluation board will start blinking; otherwise, a red LED will start

blinking. Figure 24 shows a flow chart of Project_L0.

Figure 24. Project_L0 flow chart

Start

LED3 toggle
continuously

User button
Pressed ?

Execute
FIR filter

test

Check
FIR test
result

SLIB
Operate

successfully?

Green LED4 toggle
in infinite loop

Red LED2 toggle
in infinite loop

SLIB
already

enabled?

Green LED4 on
3 seconds

Enable SLIB

Execute
system rest to activate

SLIB

Red LED2
Always On

Yes

No

yes

Success

Yes

Fail

No

No

AT32A423 Security Library Application Note

2024.03.07 27 Ver 2.0.0

To run this example code, follow the procedures below:

(1) Use Keil® μvision to open Project_L0 under

“\utilities\AT32A423_slib_demo\project_l0\mdk_v5\”, and start compiling.

(2) Prior to download, first check whether sLib or read/write protection (FAP/EPP) is enabled for

the AT-START-A423 evaluation board. If enabled, use ICP tool to unlock this protection before

starting download.

(3) After successful download and execution, LED3 on the board will keep blinking.

(4) Press “USER” button on the board to start low-pass filter operation.

(5) Compare operation results. If correct, green LED4 will start blinking; otherwise, red LED2 starts

flashing.

(6) On the premise that operation results are correct, if USE_SLIB_FUNCTION in main.c is

already defined and sLib is not enabled, then the slib_enable() will be executed to set sLib. If

sLib settings failed, red LED2 will be always ON; If successful, a green LED4 will flash for

about 3s and start to perform system reset to enable sLib. Next, program returns to step (3).

 How to generate header files and symbol definition files

Both header file and symbol definition file are required for Project_L1 to call FIR low-pass filter

functions. In the example, header file refers to the “fir_filter.h” in the main.c.

How to generate symbol definition file depends on toolchains used.

Use Keil® μvision to generate a symbol definition file

Proceed as follows:

 Go to Options for Target  Linker window.

 In “Misc controls column (as shown in Figure 25), add the command “--

symdefs=fir_filter_symbol.txt”.

Figure 25. Keil Misc controls option

 After compiling the whole project, a symbol definition file named “fir_filter_symbol.txt” is

created under “project_l0\mdk_v5\Objects”.

AT32A423 Security Library Application Note

2024.03.07 28 Ver 2.0.0

 Such symbol definition file contains all symbol definitions related to the project, and thus some

of them should be removed so as to reserve low-pass filter function definitions that will be used

by end users. The modified “fir_filter_symbol.txt” is shown below.

Figure 26. Modified fir_filter_symbol.txt

Use IAR to generate symbol definition files

Proceed as follows:

 Go to ProjectOptionBuild Actions.

Figure 27. IAR Build Actions option

 Add the following command in the Post-build command line

$TOOLKIT_DIR$\bin\isymexport.exe --edit "$PROJ_DIR$\steering_file.txt"

"$TARGET_PATH$" "$PROJ_DIR$\fir_filter_symbol.o"

 The “fir_filter_symbol.o” refers to a symbol definition file. The “steering_file.txt” stored under

“project_l0\iar_v8.2” is used to select which symbols of functions need to be created. Then edit

them according to the contents in the sLib, as shown in Figure 28 in which “show” is used to

select a function command.

Figure 28. Edit steering_file.txt

AT32A423 Security Library Application Note

2024.03.07 29 Ver 2.0.0

 Project_L1: example for end users

Project_L1 example needs to use FIR low-pass filter functions that are debugged in Project_L0 and

programmed into AT32A423’s Flash memory with sLib enabled.

Based on header file, symbol definition file and Flash memory map defined in Project_L0, end

users are able to do the following on the basis of Project_L1 example:

 Create an application project

 Introduce header file and symbol definition file from Project_L0 into its project

 Call FIR low-pass filter functions

 Develop and debug user programs

Cautions:

Project_L1 must use the same toolchains and the same version of compiler as those of Project_L0

as differences between software versions may cause incompatibility issue, which in turn makes it

impossible to use codes from Project_L0.

For example, Project_L0 uses Keil® μvision V5.36.0.0, so does Project_L1.

 Create a user project

Considering that some Flash memory sectors have been occupied by sLib area enabled in

Project_L0, the addresses in which Project_L1 codes are stored must be configured taking into

account Flash memory map in Project_L0.

Figure 13 shows Flash memory map used in this example, where sector 2 to sector 5 are owned by

sLib. It is necessary for end users to separate such sLib area (sector 2 to sector 5) from other

areas through linker control file, so as to prevent codes from being placed into sLib.

Keil® μvision: scatter file

Based on the “end_user_code.sct” file under “project_l1\mdk_v5\”, the users can divide main Flash

memory into two segments. The area in between is sLib area. Besides, the space after the address

0x2000B000 is reserved for RAM, as shown in Figure 29.

Figure 29. Modified scatter file

AT32A423 Security Library Application Note

2024.03.07 30 Ver 2.0.0

IAR: ICF file

The users can refer to the following content in the “enduser.icf” file which is stored under

“project_l1\iar_V8.2\”.

Figure 30. Modified icf file

 Add symbol definition file into project

The symbol definition file “fir_filter_symbol.txt” which is created in Project_L0 must be added to

Project_L1 so that it can be correctly compiled and linked to sLib codes.

Add a symbol definition file in Keil® μvision environment

Add the “fir_filter_symbol.txt” into project, as shown in Figure 31.

Figure 31. Add symbol definition file in Keil

After adding this file into “fir_filter” group, its file type must be changed into Object file, instead of its

original text format.

Change it as follows:

Figure 32. Change symbol definition file to Object file

AT32A423 Security Library Application Note

2024.03.07 31 Ver 2.0.0

Add symbol definition file in IAR environment

Add the “fir_filter_symbol.o” file into “fir_filter” group, as shown in Figure 33:

Figure 33. Add symbol definition file in IAR

 Call sLib functions

After “filter.h” file is referenced by main.c and symbol definition file is successfully added into

project, it is now ready to call low-pass filter functions from sLib area

FIR_lowpass_filter(inputF32, outputF32, TEST_LENGTH_SAMPLES);

With:

 inputF32: pointer to data table storing input signals

 outputF32: pointer to data table storing output signals

 TEST_LENGTH_SAMPLES: the size of signal samples to be processed

 Project_L1 flow chart

Project_L1 flow chart is shown in Figure 34:

 LED3 will start blinking upon execution;

 Press “USER” button on AT-START board to start operating FIR_lowpass_filter();

 If operation result is correct, greed LED4 starts flashing, if failed, read LED2 starts flashing.

AT32A423 Security Library Application Note

2024.03.07 32 Ver 2.0.0

Figure 34. Project_L1 flow chart

Start

LED3 toggle
continuously

User button
Pressed ?

Execute
FIR filter

test

Check
FIR test
result

Green LED4 toggle
in infinite loop

Red LED2 toggle
in infinite loop

yes

Success Fail

No

 sLib protection in debug mode

Considering the fact that end users need to debug codes during application development, here we

use Keil® μvision as an example to demonstrate how to prevent sLib codes from being read in

debug mode.

 Open Project_L1 and recompile;

 Click “Start/Stop Debug Session” to enter debug mode;

 In ”Disassembly” window, right click and choose “Show Disassembly at Address”, as shown in

Figure 35.

AT32A423 Security Library Application Note

2024.03.07 33 Ver 2.0.0

Figure 35. “Show Disassembly at Address” window

 Enter address 0x08002000, which is the start address (sector 2) of SLIB_INSTRUCTION.

Figure 36. “Show Code at Address” setting

You can see that the address starts with 0x08002000, and all codes are 0xFFFFFFFF.

Figure 37. View code

 Similarly, in “Memory” window, enter address 0x08002000 and return all 0xFF.

AT32A423 Security Library Application Note

2024.03.07 34 Ver 2.0.0

Figure 38. View code in Memory window

 In “Memory” window, enter “0x08001000” (the start address (sector 2) of SLIB_READ_ONLY).

Because this area is readable by D-Code bus, we can see their original data.

Figure 39. View SLIB_READ_ONLY start sector in Memory

In “Memory” window, when you click data in the 0x08002000 twice to try to modify them; the

EPPERR bit in the FLASH_STS register will be set to 1 as a warning, indicating that they are write-

protected.

Figure 40. SLIB write protection test

If write protection error interrupt is enabled, it will enter interrupt routine.

Figure 41. Write protection error interrupt

AT32A423 Security Library Application Note

2024.03.07 35 Ver 2.0.0

 Integrate and download codes of solution provider
and user

After the completion of code design on both solution providers and end users, these codes should

be downloaded into the same MCU device. In this scenario, data security issue should be taken

into account. In the subsequent sections, two download procedures based on Project_L0 and

Project_L1 are recommended as a reference. The procedures involves AT-Link offline download

mode, with its details being described in ICP user guide and AT-Link user manual.

 Write code separated on solution provider and end user

First, solution provider programs sLib codes into MCU; secondly, end user programs application

codes into MCU, as shown below:

(1) Method A

The solution provider uses ICP to save the compiled sLib codes as BIN or HEX file.

First download the whole project to MCU (do not configure sLib, FAP, etc. at this point), then

read sLib code (address from 0x08001000 to 0x08002FFF) through memory read function.

Finally, in ICP tool, click “File”, and choose “save flash data as” to save data as BIN or HEX. In

Figure 42 below, slib.bin is a BIN file.

Figure 42. Save SLIB code

Method B

The solution provider uses the compiled project to directly generate BIN file.

Choose a section of sLib area, for example, in Keil project, in “User” option, add “fromelf.exe --bin --

output .\Listings\@L.bin !L” to produce a corresponding BIN file, that is, add a suffix “.bin” to this

sLib file.

AT32A423 Security Library Application Note

2024.03.07 36 Ver 2.0.0

In this example, ER_SLIB_INSTRUCTION.bin and ER_SLIB_READ_ONLY.bin correspond to

SLIB-INSTRUCTION file at 0x08002000 and SLIB-READ-ONLY file at 0x08001000, respectively.

Figure 43. Change SLIB code to BIN file

(2) Use ICP tool to program .bin file into MCU online.

Figure 44. ICP programs MCU online

(3) Alternatively, use ICP tool to configure an offline project and save it to AT-Link, then program it

into MCU through AT-Link offline mode, and save this offline project, as shown in Figure 45.

AT32A423 Security Library Application Note

2024.03.07 37 Ver 2.0.0

Figure 45. AT-Link programs MCU offline

(4) After step (2) or (3), a MCU device with the programmed sLib code is delivered to end user. In

this case, sLib is already enabled, and the end user can program application code via online or

offline mode to MCU to finish the rest of the process. Figure 46 gives an online programming

example.

AT32A423 Security Library Application Note

2024.03.07 38 Ver 2.0.0

Figure 46. End user programs code to MCU

 Combine solution provider code with end user code

SLIB code from solution provider and end user code are integrated into an offline project, which is

then downloaded into MCU via AT-Link offline mode.

(1) The solution provider creates a BIN format of sLib code according to the section 4.1.

(2) The solution provider uses ICP to create an offline project and save it to PC. Multiple

parameters such as “download times”, “project bonded to AT-Link”, “enable FAP after

download” and others can be configured according to actual needs, as shown in Figure 47.

Note: The offline project itself is encrypted. To enhance data security, the slib.bin can be changed into an

encrypted slib.benc file for solution provider before being added to an offline project. But in this case, such

offline project can only be accessible to the corresponding AT-Link with passkey.

AT32A423 Security Library Application Note

2024.03.07 39 Ver 2.0.0

Figure 47. Create offline project

(3) For end users, they can use ICP to open such offline project, and click “Add” to add user

application code into such project, and save it to PC or directly to AT-Link, and then perform

offline download to finish the whole operation. Figure 48 shows how to add a project file

Note: To avoid code disclosure and cracking, it is forbidden to change parameters settings while adding code

into an offline project. Based on this consideration, it is necessary for solution providers to configure final

settings in advance.

AT32A423 Security Library Application Note

2024.03.07 40 Ver 2.0.0

Figure 48. Add project file

AT32A423 Security Library Application Note

2024.03.07 41 Ver 2.0.0

 Revision history

Table 2. Document revision history

Date Version Revision note

2024.03.07 2.0.0 Initial release.

AT32A423 Security Library Application Note

2024.03.07 42 Ver 2.0.0

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services; ARTERY assumes no liability for

purchasers’ selection or use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous

representation in any forms. If any part of this document involves third party’s products or services, it does NOT imply that ARTERY

authorizes the use of the third party’s products or services, or permits any of the intellectual property, or guarantees any uses of the third

party’s products or services or intellectual property in any way.

Except as provided in ARTERY’s terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty,

relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a

particular purpose (based on the corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other

intellectual property right.

ARTERY’s products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have

specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements

on product function safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other

applications that may cause injuries, deaths or property damages. Since ARTERY products are not intended for the above-mentioned

purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks

caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with

all statutory and regulatory requirements regarding these uses.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will

immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and

ARTERY disclaims any responsibility in any form.

© 2024 ARTERY Technology – All Rights Reserved

	1 Overview
	2 Principles
	2.1 sLib application principles
	2.2 How to enable sLib protection
	2.3 How to disable sLib protection
	2.4 Set and run sLib
	2.4.1 Don’t set interrupt vector table as sLib instruction area
	2.4.2 Relevance between sLib code and user code

	3 Example code in sLib
	3.1 Requirements
	3.1.1 Hardware requirements
	3.1.2 Software requirements

	3.2 Example projects
	3.3 sLib protected code: FIR low-pass filter
	3.4 Project_L0: example for solution providers
	3.4.1 Generate execute-only code
	3.4.2 Set sLib address
	3.4.3 How to enable sLib function
	3.4.4 Project_L0 flow chart
	3.4.5 How to generate header files and symbol definition files

	3.5 Project_L1: example for end users
	3.5.1 Create a user project
	3.5.2 Add symbol definition file into project
	3.5.3 Call sLib functions
	3.5.4 Project_L1 flow chart
	3.5.5 sLib protection in debug mode

	4 Integrate and download codes of solution provider and user
	4.1 Write code separated on solution provider and end user
	4.2 Combine solution provider code with end user code

	5 Revision history

