
AT32A403A Series Errata Sheet

 2023.03.08 1 Ver 2.0.9

ES0012

Errata sheet

AT32A403A device limitations

Chip identification
This errata sheet applies to the AT32A403A series. This series features an ARM™ 32-bit Cortex®-

M4 core.

Table 1. Device summary

Device Flash memory Part numbers

AT32A403A

1024 KB
AT32A403AACGU7, AT32A403AACGT7,

AT32A403AARGT7, AT32A403AAVGT7,

512 KB
AT32A403AACEU7, AT32A403AACET7,

AT32A403AARET7, AT32A403AAVET7,

256 KB
AT32A403AACCU7, AT32A403AACCT7,

AT32A403AARCT7, AT32A403AAVCT7,

AT32A403A Series Errata Sheet

2023.08.03 2 Ver 2.0.0

Contents

 AT32A403A limitations .. 5

 CAN .. 6

 Bit stuffing error causes data error during CAN communication 6

 Failed to filter RTR bit of standard frame in 32-bit identifier mask mode 9

 CAN sends unexpected messages in case of narrow pulse disturbance on BS2 10

 Fail to cancel mailbox transmit command when CAN bus disconnected 10

 I2C ... 11

 I2C slave communication failed when APB equals or less than 4MHz 11

 BUSERR is detected by I2C before start of communication 11

 I2S .. 12

 UDR flag is set in I2S slave transmission mode combined with discontinuous

communication state .. 12

 Data reception error when I2S 24-bit data is packed into 32-bit format 12

 PWC ... 12

 Unable to wake up Deepsleep mode after AHB frequency division 12

 Systick interrupt wakes up Deepsleep mode ... 12

 CRM ... 13

 CLKOUT output exception after entering Deepsleep mode 13

 TMR ... 13

 TMR overflow event in encoder mode counter .. 13

 Break input failed when TMREN=0 (TMR disabled) .. 14

 RTC .. 14

 Actual RTC counter value is the programmed value plus 1 14

 Flash .. 14

 Program error may occur when sLib is placed in NZW area 14

 Erasing NZW during code execution causes program exception 15

 CPU read Flash causes program exception during SPIM erase 15

 SPI ... 15

 CS failing edge not synchronized in slave SPI hardware CS mode 15

 EXINT ... 16

 Software triggers twice EXINT line interrupt responses .. 16

AT32A403A Series Errata Sheet

2023.08.03 3 Ver 2.0.0

 Document revision history ... 17

AT32A403A Series Errata Sheet

2023.08.03 4 Ver 2.0.0

List of tables

Table 1. Device summary .. 1

Table 2. Summary of device limitations ... 5

Table 3. Document revision history .. 17

AT32A403A Series Errata Sheet

2023.08.03 5 Ver 2.0.0

 AT32A403A limitations

Table 2 summarizes the limitations on AT32A403A device that have been identified so far.

 Table 2. Summary of device limitations

Sections Description

1.1 CAN

1.1.1. Bit stuffing error causes data error during CAN communication

1.1.2. Failed to filter RTR bit of standard frame in 32-bit identifier mask mode

1.1.3. CAN sends unexpected messages in case of narrow pulse disturbance on BS2

1.1.4 Fail to cancel mailbox transmit command when CAN bus disconnected

1.2 I2C

1.2.1. I2C slave communication failed when APB equals or less than 4MHz

1.2.2. BUSERR is detected by I2C before start of communication

1.3 I2S

1.3.1. UDR flag is set in I2S slave transmission mode combined with discontinuous
communication state

1.3.2. Data reception error when I2S 24-bit data is packed into 32-bit format

1.4 PWC

1.4.1. Unable to wake up Deepsleep mode after AHB frequency division

1.4.2. Systick interrupt wakes up Deepsleep mode

1.5 CRM 1.5.1. CLKOUT output exception after entering Deepsleep mode

1.6 TMR

1.6.1. TMR overflow event in encoder mode counter

1.6.2. Break input failed when TMREN=0 (TMR disabled)

1.7 RTC 1.7.1. Actual RTC counter value is the programmed value plus 1

1.8 FLASH

1.8.1. Program error may occur when sLib is placed in NZW area

1.8.2. Erasing NZW during code execution causes program exception

1.8.3. CPU read Flash causes program exception during SPIM erase

1.9 SPI 1.9.1. CS failing edge not synchronized in slave SPI hardware CS mode

1.10 EXINT 1.10.1. Software triggers twice EXINT line interrupt responses

AT32A403A Series Errata Sheet

2023.08.03 6 Ver 2.0.0

 CAN

 Bit stuffing error causes data error during CAN communication

 Description:

If a bit stuffing error occurs in the data filed during CAN communication due to external

disturbance, CAN will stop receiving the current data frame and send an error to the bus, but

the next data frame will be out of order while the subsequent messages are able to return to

normal automatically.

 Workaround:

Method 1:

Enable the error interrupt (its priority must be set very high) corresponding to the interrupt

number in the Error Type Record (ETR bit). Once a bit stuffing error is detected, reset CAN

(only need reset CAN registers and relevant GPIOs, without resetting NVIC), and re-initialize

CAN in the CAN error interrupt function.

This method applies to the scenario where a quick CAN initialization is required in order to

ensure a quick resume of CAN communication, avoiding excess CAN data loss.

Take a CAN1 as an example, its typical code as follows:

/* Enable CAN error interrupt corresponding to the last CAN error interrupt number and give very high

priority */

 nvic_irq_enable(CAN1_SE_IRQn, 0x00, 0x00);

 can_interrupt_enable(CAN1, CAN_ETRIEN_INT, TRUE);

 can_interrupt_enable(CAN1, CAN_EOIEN_INT, TRUE);

/* Interrupt service functions */

void CAN1_SE_IRQHandler(void)

{

 __IO uint32_t err_index = 0;

 if(can_flag_get(CAN1,CAN_ETR_FLAG) != RESET)

 {

 err_index = CAN1->ests & 0x70;

 can_flag_clear(CAN1, CAN_ETR_FLAG);

 if(err_index == 0x00000010)

 {

 can_reset(CAN1);

 /* Call CAN initialization function*/

 }

 }

}

Notes:

a) The interrupt in CAN Error Type Record (ETR) should be given with very high priority

b) As it takes some time to finish CAN initialization, CAN’s inability to resume communication

immediately when an error occurs may cause loss of data.

AT32A403A Series Errata Sheet

2023.08.03 7 Ver 2.0.0

Method 2：

Enable the error interrupt (its priority must be set as very high) corresponding to the CAN error

interrupt number in the Error Type Record (ETR bit). Once a bit stuffing error is detected, reset

CAN (only need reset CAN registers and relevant GPIOs, without resetting NVIC), record the

reset event, and re-initialize CAN in other low-priority interrupts or main functions.

This method applies to the scenario where the CAN communication is unable to resume in

time, but the CAN re-initialization must be performed in order not to affect operations of other

applications.

Take a CAN1 as an example, its typical code as follows:

/* Enable CAN error interrupt corresponding to the last CAN error interrupt number and give very high

priority */

 nvic_irq_enable(CAN1_SE_IRQn, 0x00, 0x00);

 can_interrupt_enable(CAN1, CAN_ETRIEN_INT, TRUE);

 can_interrupt_enable(CAN1, CAN_EOIEN_INT, TRUE);

/* Interrupt service functions */

__IO uint32_t can_reset_index = 0;

void CAN1_SE_IRQHandler(void)

{

 __IO uint32_t err_index = 0;

 if(can_flag_get(CAN1,CAN_ETR_FLAG) != RESET)

 {

 err_index = CAN1->ests & 0x70;

 can_flag_clear(CAN1, CAN_ETR_FLAG);

 if(err_index == 0x00000010)

 {

 can_reset(CAN1);

 can_reset_index = 1;

 }

 }

}

Then the application polls whether “can_reset_index” is set or not at the desired place (in main

functions, say). If set, call the CAN initialization function.

Notes:

a) The interrupt in CAN Error Type Record should be given very high priority

b) As it takes some time to finish CAN initialization, CAN’s inability to resume communication

immediately when an error occurs may cause loss of data.

AT32A403A Series Errata Sheet

2023.08.03 8 Ver 2.0.0

Method 3:

Enable CAN error interrupt (its priority must be set as very high) corresponding to the CAN

error interrupt number in the Error Type Record (ETR bit). Once a bit stuffing error is detected,

send an invalid message with a very-high-priority identifier.

This method applies to the scenario in which one doesn’t want to spend time on resetting

CAN , all message identifiers on CAN bus are known, and each CAN node receives messages

in accordance with the identifier filtering conditions.

Take a CAN1 as an example, its typical code as follows:

/* Send a frame of invalid message with a very-high-priority identifier */

static void can_transmit_data(void)

{

uint8_t transmit_mailbox;

can_tx_message_type tx_message_struct;

tx_message_struct.standard_id = 0x0;

tx_message_struct.extended_id = 0x0;

tx_message_struct.id_type = CAN_ID_STANDARD;

tx_message_struct.frame_type = CAN_TFT_DATA;

tx_message_struct.dlc = 8;

tx_message_struct.data[0] = 0x00;

tx_message_struct.data[1] = 0x00;

tx_message_struct.data[2] = 0x00;

tx_message_struct.data[3] = 0x00;

tx_message_struct.data[4] = 0x00;

tx_message_struct.data[5] = 0x00;

tx_message_struct.data[6] = 0x00;

tx_message_struct.data[7] = 0x00;

can_message_transmit(CAN1, &tx_message_struct);

}

/* Enable the error interrupt corresponding to the last CAN error interrupt number and set very high interrupt

priority*/

 nvic_irq_enable(CAN1_SE_IRQn, 0x00, 0x00);

 can_interrupt_enable(CAN1, CAN_ETRIEN_INT, TRUE);

 can_interrupt_enable(CAN1, CAN_EOIEN_INT, TRUE);

/* Interrupt service function*/

void CAN1_SE_IRQHandler(void)

{

 __IO uint32_t err_index = 0;

 if(can_flag_get(CAN1,CAN_ETR_FLAG) != RESET)

 {

AT32A403A Series Errata Sheet

2023.08.03 9 Ver 2.0.0

 err_index = CAN1->ests & 0x70;

 can_flag_clear(CAN1, CAN_ETR_FLAG);

 if(err_index == 0x00000010)

 {

 can_transmit_data();

 }

 }

}

Notes:

a) The interrupt in CAN Error Type Record should be configured as very high priority

b) This method is only applicable to the scenario where the transmit FIFO priority is

determined by the message identifier.

c) The identifier of the invalid message of this method is changeable. But its priority must be

the highest among the CAN bus, and it cannot be received as a normal message by other

nodes.

 Failed to filter RTR bit of standard frame in 32-bit identifier mask
mode

 Description:

When the CAN filter mode is configured in 32-bit identifier mask mode, the RTR bit (remote

frame identifier) is unable to be filtered effectively during a standard frame filtering.

When the following conditions are met, follow the “Workaround” below to solve this problem:

1. 32-bit wide identifier mask mode is used

2. A standard frame is being filtered but the remote frame passing through filter is unwanted

 Workaround:

Method 1: By software. When filtering a standard frame in 32-bit wide identifier mask mode,

the software is used to get the status of the RTR bit (remote frame identifier) and decide if

whether this frame is of interest. For example,

void CAN1_RX0_IRQHandler(void)

{

 can_rx_message_type rx_message_struct;

 if(can_flag_get(CAN1,CAN_RF0MN_FLAG) != RESET)

 {

 can_message_receive(CAN1, CAN_RX_FIFO0, &rx_message_struct);

 /* only store the data frame,discard the remote frame */

 if((rx_message_struct.id_type == CAN_ID_STANDARD) && (rx_message_struct.frame_type ==

CAN_TFT_DATA))

 {

 /* user store the receive data */

 }

 }

}

Method 2: Use other filtering mode according to the needs, such as, 32-bit wide identifier list

mode, 16-bit wide identifier mask mode or 16-bit wide identifier list mode.

AT32A403A Series Errata Sheet

2023.08.03 10 Ver 2.0.0

 CAN sends unexpected messages in case of narrow pulse
disturbance on BS2

 Description:

In case of a large amount of narrow pulses (pulse width less than 1tp) on CAN bus, the CAN

nodes are likely to send unexpected messages, for instance, a data frame is sent as a remote

frame, a standard frame as an extended one, or data phase error occurs.

 Workaround:

Set synchronization width RSAW = BTS2 segment width in order to avoid unexpected errors.

It should be noted that after RSAW =BTS2 is asserted, the CAN bus communication speed is

reduced when there is a lot of disturbance on CAN bus.

 Fail to cancel mailbox transmit command when CAN bus
disconnected

 Description:

As a node for data transmission, if the following two conditions are both present for CAN, it is

not possible to clear or cancel a transmit command in a mailbox within CAN error passive

interrupt, causing that the to-be-sent message command has not been canceled during the

period of CAN bus being disconnected, and such message would be retransmitted after CAN

bus communication resumes.

1. CAN bus (CANH/L) is disconnected intentially or accidentally

2. Auotmaitc retransmission feature is enabled

 Workaround:

Enable CAN error passive interrupt and disable its automatic retransmission before re-enabling

automatic retransmission in the message transmit function, as shown below:

1) Enable error passive interrupt during CAN initialization

2) Disable automatic transmission feature in CAN error passive interrupt function

static void can_configuration(void)

{

…

 /* can baudrate, set baudrate = pclk/(baudrate_div *(3 + bts1_size + bts2_size)) */

 can_baudrate_struct.baudrate_div = 12;

 can_baudrate_struct.rsaw_size = CAN_RSAW_3TQ;

 can_baudrate_struct.bts1_size = CAN_BTS1_8TQ;

 can_baudrate_struct.bts2_size = CAN_BTS2_3TQ;

…

}

nvic_irq_enable(CAN1_SE_IRQn, 0x00, 0x00);

can_interrupt_enable(CAN1, CAN_EPIEN_INT, TRUE);

can_interrupt_enable(CAN1, CAN_EOIEN_INT, TRUE);

AT32A403A Series Errata Sheet

2023.08.03 11 Ver 2.0.0

3) Re-enable automatic transmission feature in CAN message transmit function

 I2C

 I2C slave communication failed when APB equals or less than
4MHz

 Description:

I2C is unable to communicate at 400kHz in slave mode when the APB clock is equal to or less

than 4MHz.

 Workaround:

Increase the APB clock to 8 MHz, or reduce the I2C speed to 100kHz.

 BUSERR is detected by I2C before start of communication

 Description:

When all the following conditions are met, BUSERR condition would be detected by I2C, causing

communication error.

Condition 1: I2C is enabled

Condition 2: Before the start of communication

Condition 3: BUSERR timing takes place on the bus

 Workaround:

Check if the BUSERR flag is set or not before the start of communication. If it is set, just need

clear this flag to enable communication. Optionally, enable error interrupt, and clear it in the

interrupt after the BUSERR flag is set.

void CAN1_SE_IRQHandler(void)

{

 if(can_flag_get(CAN1,CAN_EPF_FLAG) != RESET)

 {

 CAN1->mctrl |= (uint32_t)(1<<4);

 can_flag_clear(CAN1, CAN_EPF_FLAG);

 }

}

CAN1->mctrl &= (uint32_t)~(1<<4);

AT32A403A Series Errata Sheet

2023.08.03 12 Ver 2.0.0

 I2S

 UDR flag is set in I2S slave transmission mode combined with
discontinuous communication state

 Description:

The UDR flag is set incorrectly, when I2S is in slave transmission mode and in discontinuous

communication state, even if data have been written before the start of communication.

 Workaround:

According to the protocol, it is recommended to use DMA or interrupts for fast data transfer in

I2S slave transmission mode to ensure smooth communication.

 Data reception error when I2S 24-bit data is packed into 32-bit
format

 Description:

When I2S 24-bit data is packed into 32-bit frame format, the remaining 8 invalid CLK data

would be received as normal data by the receiver.

 Workaround:

Method 1: Both the receiver and transmitter use the same way of packing 24-bit data into 32-

bit format.

Method 2: Discard these 8 invalid CLK data in the frame format using software.

 PWC

 Unable to wake up Deepsleep mode after AHB frequency
division

 Description:

After the AHB frequency is divided, no wakeup sources can wake up the device from

Deepsleep mode.

 Workaround:

Do not perform AHB frequency division in Deepsleep mode.

Remove AHB frequency division before entering Deepsleep mode, and then configure the

desired AHB frequency division after waking up from Deepsleep mode.

 Systick interrupt wakes up Deepsleep mode

 Description:

If the Systick or Systick interrupt is not disabled before entering Deepsleep mode, the Systick

would keep running after Deepsleep mode entry, and the subsequent Systick interrupt would

wake up Deepsleep mode.

 Workaround:

Disable Systick or Systick interrupt before entering Deepsleep mode.

AT32A403A Series Errata Sheet

2023.08.03 13 Ver 2.0.0

 CRM

 CLKOUT output exception after entering Deepsleep mode

 Description:

If the DEEPSLEEP_DEBUG bit is set 0, and the CLKOUT is used as a system clock output, there

would still be clock output (at LICK clock frequency) on the CLKOUT pin after the Deepsleep mode

is entered.

 Workaround:

Configure CLKOUT as NOCLK before entering Deepsleep mode, and then configure it as

system clock output after leaving Deepsleep mode.

 TMR

 TMR overflow event in encoder mode counter

 Description:

In encoder mode counter, if the counter counts back and forth between 0 and PR, the OVFIF

bit of the TMR would not be set either at an overflow or underflow event.

 Workaround 1:

Configure the C3IF and C4IF channels of the TMR which is using the encoder as output mode,

set C3DT = AR, and C4DT = 0, and enable C3DT and C4IF interrupts.

For C3IF event & downcounting interrupt, it indicates an underrun

For C4IF event & upcounting interrupt, it indicates an overrun

This method has its limitation: If the input frequency of the encoder mode counter is so fast,

interrupts would occur frequently and have to be handled by software, causing not enough time

for software to deal with interrupts. Thus this method applies to the scenario where the external

input frequency of the encoder is not so fast.

 Workaround 2:

Turn to a TMR with enhanced mode (the counter can be extended from 16-bit to 32-bit width)

in order to expand the encoder’s counting range that detects forward and reverse rotation, and

set the initial value of the counter to PR/2 so as to avoid timer overflow

Note: The forward and reverse rotation of the encoder must be limited to a certain range. An

overflow still occurs if the encoder were always rotated in one direction. Thus This method

applies to the scenario where the rotation of the encoder is controlled at certain range.

AT32A403A Series Errata Sheet

2023.08.03 14 Ver 2.0.0

 Break input failed when TMREN=0 (TMR disabled)

 Description:

When TMREN=0 (Timer is not enbled), break input failed to work, causing it unable to trigger

break event or interrupt.

Example: in single-pulse mode, TMREN is cleared (0) automatically at the end of one-cycle

counting. But due to above-mentioned reason relating to break input, output enable bit (OEN)

cannot be cleared, nor can a break flag be set.

 Workaround:

None.

 RTC

 Actual RTC counter value is the programmed value plus 1

 Description:

After the completion of RTC value setting, the actual RTC value turns out to be the programmed

value plus 1.

 Workaround:

Set a frequency division value before programming RTC counter value.

 Flash

 Program error may occur when sLib is placed in NZW area

 Description:

When the sLib (security library) is placed in the non-zero-wait area, if the CPU accesses I-code

and D-code back and forth quickly during program runtime, it is likely that the mismatched bus

is mistakenly used to access sLib given the fact that accessing internal Flash memory takes

some time during bus ID switching. This mismatching operation sends an erroneous instruction

(or data) to CPU, causing program error.

 Workaround:

Place sLib in the zero-wait area.

rtc_wait_config_finish();

rtc_divider_set(32767);

rtc_wait_config_finish();

rtc_counter_set(100);

AT32A403A Series Errata Sheet

2023.08.03 15 Ver 2.0.0

 Erasing NZW during code execution causes program exception

 Description:

The erase operation in the zero-wait (ZW) area does not affect program running. However, if

the program contains instructions from both zero-wait (ZW) and non-zero-wait (NZW) area, the

program exception may occur because of reading data in NZW area.

For instance, an interrupt can be handled during ZW area erase operation, but if the interrupt

handler functions involve both ZW and ZW areas, the program exception may occur.

 Workaround:

The reason behind this issue is that all execution codes must be placed in the same area (all in

ZW or NZW area) during ZW erase operation.

To slove this problem, you need disable interrupt enable bits before erase, and then enable them

after the completion of erase. Meanwhile, the code related to erase functions must be placed in

the same area.

 CPU read Flash causes program exception during SPIM erase

 Description:

If CPU reads Flash memory during SPIM erase operation, the read Flash command would be

treated as reading SPIM mistakenly, causing data error and then program exception.

For instance, SPIM erase functions are compiled in NZW area, so they fetch instructions from

NZW area during erase operation. During this period, reading Flash by CPU will cause program

error.

 Workaround:

Do not read Flash during the process of SPIM erase operation.

To make this happen, disable interrupt enable bits before starting erase, and then enable interrupt

enable bits after the completion of erase. And the codes related to erase functions must be

compiled in ZW area or RAM.

 SPI

 CS failing edge not synchronized in slave SPI hardware CS
mode

 Description:

In SPI slave hardware CS mode, the initial CLK synchronization for data transfer is not

performed at each CS falling edge.

 Workaround:

Solution A: Strictly control the slave CS line, and pull high the CS line as soon as the

communication is complete.

Solution B: Enable CRC check. Once a CRC error is detected, reset SPI and restart

handshake communication.

AT32A403A Series Errata Sheet

2023.08.03 16 Ver 2.0.0

 EXINT

 Software triggers twice EXINT line interrupt responses

 Description:

When the software trigger function is used for EXINT line, twice interrupt responses are

generated on the same EXINT line at each software trigger command.

 Workaround:

Enter the interrupt function associated with software trigger, and perform the EXINT flag clear

command twice.

Alternatively, use the flag clear function defined in the latest version of BSP (described below),

or modify code based on the following method.

void exint_flag_clear(uint32_t exint_line)

{

 if((EXINT->swtrg & exint_line) == exint_line)

 {

 EXINT->intsts = exint_line;

 EXINT->intsts = exint_line;

 }

 else

 {

 EXINT->intsts = exint_line;

 }

}

AT32A403A Series Errata Sheet

2023.08.03 17 Ver 2.0.0

 Document revision history

Table 3. Document revision history

Date Version Changes

2023.08.03 2.0.0 Initial release

AT32A403A Series Errata Sheet

2023.08.03 18 Ver 2.0.0

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services, and ARTERY assumes no liability

whatsoever relating to the choice, selection or use of the ARTERY products and services described herein

No license, express or implied, to any intellectual property rights is granted under this document. If any part of this document deals with any

third party products or services, it shall not be deemed a license granted by ARTERY for the use of such third party products or services, or

any intellectual property contained therein, or considered as a warranty regarding the use in any manner of such third party products or

services or any intellectual property contained therein.

Unless otherwise specified in ARTERY’s terms and conditions of sale, ARTERY provides no warranties, express or implied, regarding the

use and/or sale of ARTERY products, including but not limited to any implied warranties of merchantability, fitness for a particular purpose

(and their equivalents under the laws of any jurisdiction), or infringement on any patent, copyright or other intellectual property right.

Purchasers hereby agree that ARTERY’s products are not designed or authorized for use in: (A) any application with special requirements

of safety such as life support and active implantable device, or system with functional safety requirements; (B) any aircraft application; (C)

any aerospace application or environment; (D) any weapon application, and/or (E) or other uses where the failure of the device or product

could result in personal injury, death, property damage. Purchasers’ unauthorized use of them in the aforementioned applications, even if

with a written notice, is solely at purchasers’ risk, and Purchasers are solely responsible for meeting all legal and regulatory requirements in

such use.

Resale of ARTERY products with provisions different from the statements and/or technical characteristics stated in this document shall

immediately void any warranty grant by ARTERY for ARTERY’s products or services described herein and shall not create or expand any

liability of ARTERY in any manner whatsoever.

© 2023 ARTERY Technology – All rights reserved

	1 AT32A403A limitations
	1.1 CAN
	1.1.1 Bit stuffing error causes data error during CAN communication
	1.1.2 Failed to filter RTR bit of standard frame in 32-bit identifier mask mode
	1.1.3 CAN sends unexpected messages in case of narrow pulse disturbance on BS2
	1.1.4 Fail to cancel mailbox transmit command when CAN bus disconnected

	1.2 I2C
	1.2.1 I2C slave communication failed when APB equals or less than 4MHz
	1.2.2 BUSERR is detected by I2C before start of communication

	1.3 I2S
	1.3.1 UDR flag is set in I2S slave transmission mode combined with discontinuous communication state
	1.3.2 Data reception error when I2S 24-bit data is packed into 32-bit format

	1.4 PWC
	1.4.1 Unable to wake up Deepsleep mode after AHB frequency division
	1.4.2 Systick interrupt wakes up Deepsleep mode

	1.5 CRM
	1.5.1 CLKOUT output exception after entering Deepsleep mode

	1.6 TMR
	1.6.1 TMR overflow event in encoder mode counter
	1.6.2 Break input failed when TMREN=0 (TMR disabled)

	1.7 RTC
	1.7.1 Actual RTC counter value is the programmed value plus 1

	1.8 Flash
	1.8.1 Program error may occur when sLib is placed in NZW area
	1.8.2 Erasing NZW during code execution causes program exception
	1.8.3 CPU read Flash causes program exception during SPIM erase

	1.9 SPI
	1.9.1 CS failing edge not synchronized in slave SPI hardware CS mode

	1.10 EXINT
	1.10.1 Software triggers twice EXINT line interrupt responses

	2 Document revision history

