

MG0006 Migration Guide

Migrating from AT32F403 to AT32F403A

Introduction

This migration guide is written to help users with the analysis of the steps required to migrate from an existing AT32F403 series to AT32F403A series device. It puts together the most important information and lists the vital aspects that need to be taken into account.

To move an application from AT32F403 series to AT32F403A series, users have to analyze the hardware and software migration.

Applicable products:

Part numbers

AT32F403Axx

Contents

1	Sim	ilaritie	s and differences between AT32F403A and AT32F403	4
	1.1	Overv	iew of similarities	4
	1.2	Overv	iew of differences	4
2	Har	dware	migration	6
3	Sof	tware r	nigration	7
	3.1	Funct	onal enhancement	7
		3.1.1	High frequency PLL settings	7
		3.1.2	Security library	7
		3.1.3	Main clock output and prescaler extension	7
		3.1.4	SPIM mapping feature	7
		3.1.5	I ² S full-duplex mode	7
		3.1.6	Extended USART and UART	7
		3.1.7	CAN2 support	7
		3.1.8	Simultaneous use of CAN and USB	7
		3.1.9	48 MHz HICK supports USB peripheral	7
		3.1.10	HICK auto clock calibration (ACC)	8
		3.1.11	64-pin package supports XMC	8
		3.1.12	Flash memory CRC check	8
		3.1.13	High-speed GPIO	8
		3.1.14	DMA flexible mapping request feature	8
	3.2	Funct	onal differences	8
		3.2.1	I ² C3 usage differences	8
		3.2.2	XMC usage differences	8
4	Rev	ision h	istory	9

List of tables

Table 1. Differences between AT32F403A and AT32F403	4
Table 2. CAN2 and I ² C3 differences	8
Table 3. XMC functional differences	8
Table 4. Document revision history	9

1 Similarities and differences between AT32F403A and AT32F403

The AT32F403A series microcontrollers are basically compatible with the AT32F403 series and provide many enhanced features, some of which are slightly different from the AT32F403 series. The differences between them are detailed in this document.

1.1 Overview of similarities

- Pin definition: The same package has the same pin definition. For extended peripherals, the alternate function of pins are defined
- Addressing space: Memory and registers have the same logical addresses, except I2C3 and CAN2. Extended peripherals occupy the reserved space of AT32F403 series.
- Compiler tools: identical, for example, Keil, IAR

1.2 Overview of differences

	AT32F403A	AT32F403		
Package	QFN48, LQFP48/64/100	QFN48, LQFP48/64/100/144		
Overte en ale ale	Max frequency 240 MHz, both APB1 and	Max frequency 200 MHz, both APB1 and		
System clock	APB2 are 120 MHz	APB2 are 100 MHz		
Startup	13 ms	20 ms		
Reset	8 ms	8.2 ms		
Wake up from	0	150		
Standby mode	8 ms	150 ms		
Flash memory 16-bit	50 µs	20.00		
write time	50 µs	30 µs		
Flash memory	50 ms	40 ms		
sector erase time	50 113			
Flash memory mass	0.8 s (AT32F403AxC)	5s (AT32F403xC)		
erase time	1.4 s (AT32F403AxE)	10s (AT32F403xE)		
	2.8 s (AT32F403AxG)	20s (AT32F403xG)		
Security library	Support	NA		
(sLib)				
Extended USART	Support USART6/UART7/UART8	Not support USART6/UART7/UART8		
and UART				
I ² S support	I ² S available on 48-pin package	I ² S unavailable on 48-pin package		
	Support I ² S2/3 full-duplex	Not support full-duplex I ² S		
Extended CAN2	Support CAN2	Not support CAN2		
Simultaneous use of	Support	NA		
CAN and USB				
Extended 48 MHz				
HICK supports USB	Support	NA		
peripheral				
HICK auto clock	Support	NA		
calibration (ACC)				

Table 1. Differences between AT32F403A and AT32F403

Migrating from AT32F403 to AT32F403A

	AT32F403A	AT32F403	
ХМС	 Not support CF card and SRAM 2 chip select Not support external interrupts 64-pin packages support 8-bit LCD parallel interface 	 Support CF card and SRAM 4 chip select Support 2 external interrupts Not support 	
Flash memory CRC check	Support	ΝΑ	
High-speed GPIO	GPIO is on AHB bus	GPIO is on APB bus	
Advanced timer TMR15	Not support	Support	
Number of DMA channels	Flexible mapping supports 14 channels	12 channels	
Ambient temperature T _A	-40°C~+105°C	-40°C~+85°C	
Run mode	37.1 mA @ 72 MHz	33.7 mA @ 72 MHz	
Power consumption at Sleep mode	31.8 mA @ 72MHz	24.7 mA @ 72 MHz	
Power consumption at Deepsleep mode	1.4 mA	1 mA	
Power consumption at Standby mode	5.7 uA	10.4 uA	
V _{BAT} independent supply	Support	NA	

2 Hardware migration

The migration from AT32F403 and AT32F403A series is very simple as they are pin-to-pin compatible basically.

3 Software migration

3.1 Functional enhancement

This section describes the enhanced peripheral features of AT32F403A versus AT32F403. The subsection presents the behavior of the AT32F403A.

3.1.1 High frequency PLL settings

- AT32F403A embeds a PLL that can output up to 240 MHz clock. The PLL settings are the same as AT32F403.
- AT32F403A has an auto clock frequency switch feature, making it a bit different from AT32F403 in terms of clock configuration procedure.
- For AT32F403, software latency is needed to wait until the HEXT and PLL become stable. This step can be skipped for AT32F403A, for it has been guaranteed by hardware.
- When the embedded PLL is greater than 108 MHz in AT32F403A, the PLL settings are a bit different, for AT32F403A needs use auto clock frequency switch feature.

3.1.2 Security library

• Security library is supported.

3.1.3 Main clock output and prescaler extension

- Clock output (CLKOUT) supports CLKOUT prescaler to obtain CLKOUT/2. CLKOUT/4...CLKOUT/512
- HEXT prescaler supports /3, /4, /5 output
- Main clock output (CLKOUT) supports LEXT, LICK, PLLCLK/4, USB48M, ADCCLK output

3.1.4 SPIM mapping feature

• SPIM_IO0 and SPIM_IO01 pins are remappable.

3.1.5 I²S full-duplex mode

• Add two modules (I2S2_ext and I2S3_ext) supporting I2S full-duplex mode

3.1.6 Extended USART and UART

Support USART6/UART7/UART8

3.1.7 CAN2 support

• Support CAN2

3.1.8 Simultaneous use of CAN and USB

- CAN and USB can be used at the same time.
- CAN manages its individual 512-byte SRAM space
- USB also has its individual SRAM space, and the disabled CAN space can be assigned to USB

3.1.9 48 MHz HICK supports USB peripheral

• 48 MHz clock can be used for the USB peripheral.

3.1.10 HICK auto clock calibration (ACC)

• Add HICK auto clock calibration (HICK ACC) module

3.1.11 64-pin package supports XMC

• 64-pin package supports XMC

3.1.12 Flash memory CRC check

• Flash memory CRC check is supported.

3.1.13 High-speed GPIO

• AT32F403A optimizes GPIO by putting GPIO clock on the AHB bus.

3.1.14 DMA flexible mapping request feature

• DMA1/DMA2 supports flexible mapping requests each.

3.2 Functional differences

This section describes the functional differences related to peripherals between AT32F403A and AT32F403. The behavior of the AT32F403A is detailed in subsections.

3.2.1 I²C3 usage differences

The configuration to define clock enable/reset for I2C3 is different, so is the peripheral base addresses of I2C3, as show in Table 2.

Device	RCC peripheral clock enable		RCC peripheral clock reset		Peripheral base address	
	CAN2	l ² C3	CAN2	l²C3	CAN2	l ² C3
AT32F403	-	APB1EN[26]	-	APB1RST[26]	-	0x4000_6800
AT32F403A	APB1EN[26]	APB2EN[23]	APB1RST[26]	APB2RST[23]	0x4000_6800	0x4001_5C00

Table 2. CAN2 and I²C3 differences

3.2.2 XMC usage differences

In terms of the largest packages available, the AT32F403A offers the largest 100-pin package, and the AT32F403 144-pin package. This cause some differences in XMC functions between AT32F403 and AT32F403A in case of their respective largest package.

Table 3. XMC functional differences

мси	Address/data lines alternate function	Bank support	Memory support
AT32F403	Non-multiplexed / multiplexed mode support	Bank: support bank1/2/3/4	SRAM/PSRAM/NOR FLASH/NAND FLASH/PC card
AT32F403A	Multiplexed mode only	Bank: support bank1/2	Multiplexed PSRAM/multiplexed NOR FLASH

4 Revision history

Date	Revision	Changes	
2022.02.28	2.0.0	Initial release	
2022.10.19	2.0.1	Added 3.2.2 XMC usage differences	

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY's products and services, and ARTERY assumes no liability whatsoever relating to the choice, selection or use of the ARTERY products and services described herein.

No license, express or implied, to any intellectual property rights is granted under this document. If any part of this document deals with any third party products or services, it shall not be deemed a license grant by ARTERY for the use of such third party products or services, or any intellectual property contained therein, or considered as a warranty regarding the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

Unless otherwise specified in ARTERY's terms and conditions of sale, ARTERY provides no warranties, express or implied, regarding the use and/or sale of ARTERY products, including but not limited to any implied warranties of merchantability, fitness for a particular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right.

Purchasers hereby agrees that ARTERY's products are not designed or authorized for use in: (A) any application with special requirements of safety such as life support and active implantable device, or system with functional safety requirements; (B) any air craft application; (C) any automotive application or environment; (D) any space application or environment, and/or (E) any weapon application. Purchasers' unauthorized use of them in the aforementioned applications, even if with a written notice, is solely at purchasers' risk, and is solely responsible for meeting all legal and regulatory requirement in such use.

Resale of ARTERY products with provisions different from the statements and/or technical features stated in this document shall immediately void any warranty grant by ARTERY for ARTERY products or services described herein and shall not create or expand in any manner whatsoever, any liability of ARTERY.

© 2022 Artery Technology -All rights reserved