

MG0017

Migration Guide

Migrating from AT32F415 to AT32F421

Introduction

This migration guide is written to help users with the analysis of the steps required to migrate from an existing AT32F415 series to AT32F421 series. It brings together the most important information and lists the vital aspects that need to be taken into account.

To move an application from AT32F415 series to AT32F421 series, users have to analyze the hardware and software migration.

Applicable products:

Part numbers

AT32F421xx

Contents

1	Sim	ilarities	and differences between AT32F421 and AT32F415	4
	1.1	Overvi	ew of similarities	4
	1.2	Overvi	ew of differences	4
2	Har	dware r	nigration	5
3	Воо	t mode	compatibility	5
4	Soft	ware m	nigration	6
	4.1	Periph	eral comparison	6
	4.2	Function	onal differences	8
		4.2.1	FLASH interface	8
		4.2.2	Interrupt vectors	8
		4.2.3	DMA interface	11
		4.2.4	PWC interface	13
		4.2.5	ADC interface	13
		4.2.6	EXINT interrupt source selection	14
		4.2.7	GPIO interface	14
		4.2.8	CMP interface	14
		4.2.9	ERTC interface	15
		4.2.10	USART interface	15
		4.2.11	Security library interface	15
		4.2.12	Additional WKUP pins	15
		4.2.13	Additional low-power consumption in Deepsleep mode	15
		4.2.14	Additional TMR15, TMR16 and TMR17 timers	15
		4.2.15	Additional infrared transmitter	15
5	Rev	ision hi	istory	16

List of tables

Table 1. Differences between AT32F421 and AT32F415	4
Table 2. Peripheral compatibility analysis	5
Table 3. Boot modes	5
Table 4. Peripheral compatibility analysis	6
Table 5. Flash memory address differences	8
Table 6. Interrupt vector differences	8
Table 7. DMA interface differences	. 11
Table 8. PWC interface differences	. 13
Table 9. ADC interface differences	. 13
Table 10. ERTC interface differences	. 15
Table 11. Document revision history	. 16

1 Similarities and differences between AT32F421 and AT32F415

AT32F421 series microcontrollers are basically compatible with the AT32F415 series, and provide many enhanced features, some of which are different from AT32F415. The differences between them are detailed in this document.

1.1 Overview of similarities

- Pin definition: Pin definitions are identical for the same packages. For extended peripherals, define the alternate functions of the pins.
- Compiler tools: identical, for example, Keil, IAR.

1.2 Overview of differences

	AT32F421	AT32F415
System clock	Max frequency 120 MHz, APB1 120 MHz, APB2 120 MHz	Max frequency 150 MHz, APB1 75 MHz, APB2 75 MHz
Startup	4.5 ms	600 µs
Wake up from low-power mode (Voltage regular is in low-power mode)	450 μs	360 µs
Wake up from Standby mode	1250 µs	600 µs
SRAM size	8/16 KB by part number	Fixed 32 KB
General-purpose timer	5 x timers, TMR15~17 has complementary output timers	8 x timers
Basic timer	TMR6	-
Backup register	5 x 32-bit backup registers	20 x 32-bit backup registers
CAN interface	N/A	1
USB	N/A	1 x USB2.0 OTG, supporting FS/LS master and FS device modes
Comparator	1 x COMP	2 x COMPs
	4-level speed/power consumption selection, with blanking output function	2-level speed/power consumption selection
USART	TX/RX SWAP feature	-
Infrared transmitter	1	-
Power consumption at	210 uA	680 uA
Shut-down mode	(Voltage regulator is in low-power mode)	(Voltage regulator is in low-power mode)

2 Hardware migration

AT32F421 series is pin-to-pin compatible with AT32F415 series, except for the GPIO port multiplexed as HEXT. All peripherals share the same pins in the two devices, with the only difference that AT32F421 embeds one CMP while the AT32F415 embeds two CMPs due to their peripheral difference, meaning that they differ on the alternate functions of the pins. Refer to the corresponding datasheet for more information on the pins.

Table 2. Peripheral compatibility analysis

AT32F421	AT32F415
PF0	PD0
PF1	PD1

3

Boot mode compatibility

Table 3 presents the configurations of the Boot mode selection for AT32F421 and AT32F415.

Boot mode selection		Boot modes	Description
BOOT1	BOOT0	Boot modes	Description
x	0	Main Flash memory	Main Flash memory is selected as boot space
0	1	Boot memory	Boot memory is selected as boot space
1	1	Embedded SRAM	Embedded SRAM is selected as boot space

Table 3. Boot modes

• For AT32F415 series, BOOT0 corresponds to the BOOT0 pin, and BOOT1 to PB2 pin, and the Boot mode is determined by the level of the peripheral circuitry of the corresponding pin.

 For AT32F421 series, BOOT0 corresponds to the BOOT0 pin, and BOOT1 to the nBOOT1 bit of the user option bytes (nBOOT1 default value 1 corresponds to the BOOT1 status value 0). The Boot mode is determined by the peripheral circuitry level of the BOOT0 pin and the user option bytes nBOOT1 bit value.

4 Software migration

4.1 Peripheral comparison

The differences related to the address map and bus distribution between AT32F421 and AT32F415 are shown in *Table 4*.

Table 4. Peripheral compatibility analysis	Table 4	Peripheral	compatibility	analysis
--	---------	------------	---------------	----------

Desighanal	AT32F415		AT32F421	
Peripheral	Bus	Base address	Bus	Base address
USBOTG		0x50000000	N/A	N/A
CRC		0x40023000		0x40023000
FLASH		0x40022000	AHB	0x40022000
CRM		0x40021000		0x40021000
DMA2		0x40020400	N/A	N/A
DMA	АНВ	0x40020000		0x40020000
GPIOF		0x4001C000	AHB	0x48001400
GPIOD		0x40014000	N/A	N/A
GPIOC		0x40011000	АНВ	0x48000800
GPIOB		0x40010C00		0x48000400
GPIOA		0x40010800		0x48000000
SDIO		0x40018000	N/A	N/A
ACC		0x40015800	N/A	N/A
TMR11		0x40015400	N/A	N/A
TMR10		0x40015000	N/A	N/A
TMR9		0x40014C00	N/A	N/A
TMR17	APB2	0x40014800		0x40014800
TMR16]	0x40014400		0x40014400
TMR15		0x40014000	APB2	0x40014000
USART1]	0x40013800]	0x40013800

D	AT	32F415	AT32F421	
Peripheral	Bus	Base address	Bus	Base address
SPI1		0x40013000		0x40013000
TMR1		0x40012C00		0x40012C00
ADC		0x40012400		0x40012400
EXINT		0x40010400		0x40010400
SCFG	N/A	N/A		0x40010000
IOMUX	APB2	0x40010000	N/A	N/A
PWC		0x40007000	APB1	0x40007000
CAN		0x40006400	N/A	N/A
l ² C2		0x40005800		0x40005800
l ² C1		0x40005400	- APB1	0x40005400
UART5	_	0x40005000	N/A	N/A
UART4	_	0x40004C00	N/A	N/A
USART3	_	0x40004800	N/A	N/A
USART2		0x40004400		0x40004400
SPI2		0x40003800		0x40003800
WDT	APB1	0x40003000		0x40003000
WWDT	_	0x40002C00	APB1	0x40002C00
RTC		0x40002800		0x40002800
CMP		0x40002400		SCFG+0x1C
TMR14		0x40002000	1	0x40002000
TMR5		0x40000C00	N/A	N/A
TMR4		0x40000800	N/A	N/A
TMR3		0x40000400	APB1	0x40000400
TMR2		0x40000000	N/A	N/A

4.2 Functional differences

This section describes the peripheral differences in the AT32F421 series versus AT32F415 series. The peripheral behavior of the AT32F421 series is detailed in the subsections below.

4.2.1 FLASH interface

• *Table 5* presents the differences between AT32F421 series and AT32F415 in terms of Boot memory and User system data area.

Memory	AT32F415	AT32F421
Boot memory	0x1FFFAC00-0x1FFFF3FF	0x1FFFE400-0x1FFFF3FF
User system data area	0x1FFFF800-0x1FFFFBFF	0x1FFFF800-0x1FFFF9FF

Table 5. Flash memory address differences

As the control bit function of the FLASH_PSR register is different, the user just needs follow BSP library functions to operate while transiting from AT32F415 to AT32F421, without the need of manual change.

4.2.2 Interrupt vectors

• *Table 6* presents the interrupt vector differences in AT32F421 series versus AT32F415 series.

Table 6.	Interrupt	vector	differences
----------	-----------	--------	-------------

Position	AT32F415	AT32F421
0	WDT	WDT
1	PVM	PVM
2	TAMPER	ERTC
3	ERTC	FLASH
4	FLASH	CRM
5	CRM	EXINT0_1
6	EXINT0	EXINT2_3
7	EXINT1	EXINT4_15
8	EXINT2	Reserved
9	EXINT3	DMA_CH1
10	EXINT4	DMA_CH2_CH3
11	DMA_CH1	DMA_CH4_CH5
12	DMA_CH2	ADC_CMP

Position	AT32F415	AT32F421
13	DMA_CH3	TMR1_BRK
		TMR1_UP
		TMR1_TRG
		TMR1_COM
14	DMA_CH4	TMR1_CH
15	DMA_CH5	Reserved
16	DMA_CH6	TMR3
17	DMA_CH7	TMR6
18	ADC1	Reserved
19	CAN1_TX	TMR14
20	CAN1_R0	TMR15
21	CAN1_R1	TMR16
22	CAN_SE	TMR17
23	EXINT5_9	I2C1_EVT
24	TMR1_BRK_TMR9	I2C2_EVT
25	TMR1_OVF_TMR10	SPI1
26	TMR1_TRG_HALL_TMR11	SPI2
27	TMR1_CH	USART1
28	TMR2	USART2
29	TMR3	Reserved
30	TMR4	Reserved
31	I2C1_EVT	Reserved
32	I2C1_ERR	I2C1_ERR
33	I2C2_EVT	Reserved
34	I2C2_ERR	I2C2_ERR
35	SPI1	Reserved

Position	AT32F415	AT32F421
36	SPI2	Reserved
37	USART1	Reserved
38	USART2	Reserved
39	USART3	Reserved
40	EXINT10_15	Reserved
41	ERTCAlarm	Reserved
42	OTGFS1	Reserved
43	Reserved	Reserved
44	Reserved	Reserved
45	Reserved	Reserved
46	Reserved	Reserved
47	Reserved	Reserved
48	Reserved	Reserved
49	SDIO	Reserved
50	TMR5	Reserved
51	Reserved	Reserved
52	UART4	Reserved
53	UART5	Reserved
54	Reserved	Reserved
55	Reserved	Reserved
56	DMA2_CH1	Reserved
57	DMA2_CH2	Reserved
58	DMA2_CH3	Reserved
59	DMA2_CH4_5	Reserved
60	Reserved	Reserved

Position	AT32F415	AT32F421
61	Reserved	Reserved
62	Reserved	Reserved
63	Reserved	Reserved
64	Reserved	Reserved
65	Reserved	Reserved
66	Reserved	Reserved
67	OTGFS	Reserved
68	Reserved	Reserved
69	Reserved	Reserved
70	CMP1	Reserved
71	CMP2	Reserved
72	ACC	Reserved

4.2.3 DMA interface

• Table 7 presents the differences related to DMA in the AT32F421 series versus AT32F415 series.

Table 7. DMA interface differences

Peripheral	DMA request	AT32F415	AT32F421
TMR17	TMR17_UP TMR17_CH1	N/A	DMA_Channel1/DMA_Channel2 DMA_Channel1/DMA_Channel2
TMR16	TMR16_UP TMR16_CH1	N/A	DMA_Channel3/DMA_Channel4 DMA_Channel3/DMA_Channel4
TMR15	TMR15_UP TMR15_CH1 TMR15_TRIG TMR15_COM	N/A	DMA_Channel5 DMA_Channel5 DMA_Channel5 DMA_Channel5
USART1	USART1_Rx USART1_Tx	DMA1_Channel5 DMA1_Channel4	DMA_Channel3/DMA_Channel5 DMA_Channel2/DMA_Channel4
SPI1/I ² S1	SPI1/I2S1_Rx SPI1/I2S1_Tx	DMA1_Channel2 DMA1_Channel3	DMA_Channel2 DMA_Channel3

Peripheral	DMA request	AT32F415	AT32F421
	TMR1_UP	DMA1_Channel5	DMA_Channel5
	TMR1_CH1	DMA1_Channel2	DMA_Channel2
	TMR1_CH2	DMA1_Channel3	DMA_Channel3
TMR1	TMR1_CH3	DMA1_Channel6	DMA_Channel5
	TMR1_CH4	DMA1_Channel4	DMA_Channel4
	TMR1_TRIG	DMA1_Channel4	DMA_Channel4
	TMR1_COM	DMA1_Channel4	DMA_Channel4
	ADC	DMA1_Channel1	DMA_Channel1
ADC			DMA_Channel2
12.05	I2C2_Rx	DMA1_Channel5	DMA_Channel5
l ² C2	I2C2_Tx	DMA1_Channel4	DMA_Channel4
	I2C1_Rx	DMA1_Channel7	DMA_Channel3
I ² C1	I2C1_Tx	DMA1_Channel6	DMA_Channel2
SDIO	SDIO	DMA2_Channel4	N/A
	USART2_Rx	DMA1_Channel6	DMA_Channel5
USART2	USART2_Tx	DMA1_Channel7	DMA_Channel4
0.010//200	SPI2/I2S2_Rx	DMA1_Channel4	DMA_Channel4
SPI2/I ² S2	SPI2/I2S2_Tx	DMA1_Channel5	DMA_Channel5
TMR6	TIM6_UP	N/A	DMA_Channel3
	TMR3_UP	DMA1_Channel3	DMA_Channel3
	TMR3_CH1	DMA1_Channel6	DMA_Channel4
TMR3	TMR3_TRIG	DMA1_Channel6	DMA_Channel4
	TMR3_CH3	DMA1_Channel2	DMA_Channel2
	TMR3_CH4	DMA1_Channel3	DMA_Channel3
	TMR2_UP	DMA1_Channel2	N/A
	TMR2_CH1	DMA1_Channel5	
TMR2	TMR2_CH2	DMA1_Channel7	
	TMR2_CH3	DMA1_Channel1	
	TMR2_CH4	DMA1_Channel7	
	TMR4_UP	DMA1_Channel7	N/A
	TMR4_CH1	DMA1_Channel1	
TMR4	TMR4_CH2	DMA1_Channel4	
	TMR4_CH3	DMA1_Channel5	

Peripheral	DMA request	AT32F415	AT32F421
UART4	UART4_Rx UART4_Tx	DMA2_Channel3 DMA2_Channel5	N/A
USART3	USART3_Rx USART3_Tx	DMA1_Channel3 DMA1_Channel2	N/A
TMR5	TMR5_UP TMR5_CH1 TMR5_CH2 TMR5_CH3 TMR5_CH4 TMR5_TRIG	DMA2_Channel2 DMA2_Channel5 DMA2_Channel4 DMA2_Channel2 DMA2_Channel1 DMA2_Channel1	N/A

• The AT32F415 series features flexible DMA mapping mode. In this mode, the DMA request can be remapped to any one of the 14 channels of DMA1 and DMA2. This feature is not available on AT32F421 series.

4.2.4 **PWC** interface

Table 8. PWC interface differences

PWC	AT32F415	AT32F421
Operating voltage	2.6~3.6V	2.4~3.6V
Power consumption at Deepsleep mode	In Deepsleep mode, the internal voltage regulator can be set in low-power mode to reduce power consumption	In Deepsleep mode, when the internal voltage regulator is set in low-power mode, it is also possible to enable extra low-power mode to further reduce power consumption
Wake-up pin from Standby mode	One WKUP pin	Four WKUP pins

 Table 8 presents the difference between the PWR interface of the AT32F421 series and AT32F415 series. The AT32F421 series has made some optimizations in terms of power consumption so as to provide a wider range of power supply and further reduce the power consumption through additional bits. In addition, the AT32F421 series adds three WKUP pins (WKUP2-PC13, WKUP6-PB5 and WKUP7-PB15) to wake up from Standby modes in order to adapt to more application scenarios.

4.2.5 ADC interface

• *Table 9* presents the differences between the ADC interface of AT32F421 and AT32F415 series:

Table 9. ADC interface differences

ADC	AT32F415	AT32F421
Number of channels	16 channels + 2 internal channels	15 channels + 3 internal channels

Conversion mode	Repetition/Split/Sequence/Preempted modes		Repetition/Split/Sequence/Preempted modes	
Resolution	12-bit		12-bit	
External trigger	Regular group TMR1 CH1 TMR1 CH2 TMR1 CH3 TMR2 CH2 TMR3 TRGOUT TMR4 CH4 EXINT line11 OCSWTRG	Preempted group TMR1 TRGOUT TMR1 CH1 TMR1 CH4 TMR2 CH1 TMR2 TRGOUT TMR3 CH4 TMR4 TRGOUT EXINT line15	Regular group TMR1 CH1 TMR1 CH2 TMR1 CH3 TMR3 TRGOUT TMR15 CH1 EXINT line11 OCSWTRG	Preempted group TMR1 TRGOUT TMR1 CH4 TMR3 CH4 TMR15 TRGOUT EXINT line15 PCSWTRG
	TMR1_TRGOUT	PCSWTRG		
Supply requirements	2.6 V to 3.6 V		2.4 V to 3.6 V	

4.2.6 **EXINT** interrupt source selection

There are some differences between the external interrupt configuration mode of the AT32F415 series and AT32F421 series. The AT32F415 series uses the IOMUX_EXINTCx register to configure external interrupts, while AT32F421 series uses the SYSCFG_EXTICRx register. In this way, only the mapping address of the EXTICRx register has changed, without any change to the meaning of EXTIx configuration.

4.2.7 GPIO interface

 The differences related to GPIO alternate functions in the AT32F421 series versus AT32F415 series are described as follows:

AT32F415:

I/O alternate function configuration depends on the peripheral mode used. For instance, the USART Tx pin should be configured as alternate function push-pull, and the USART Rx should be input floating or input pull-up.

To optimize the number of peripheral I/O functions on different packages, it is possible to remap some alternate functions to other pins. The IOMUX_REMAPx register is used to configure the alternate functions of the peripheral pins.

AT32F421:

It is required that the I/O pin is configured as alternate function for peripherals to use I/O functions properly.

Pin multiplexing and mapping are configured through the GPIOx_MUXL and GPIOx_MUXH registers.

4.2.8 CMP interface

 ATT32F421 is not compatible with GX32E230 with respect to CMP control register. AT32F421 supports blanking output feature.

4.2.9 ERTC interface

• Table 10 presents the ERTC differences between AT32F415 and AT32F421 series.

Table 10. ERTC interface differences

ERTC	AT32F415	AT32F421
Alarm clock B	Yes	No
Wake-up timer	Yes	No
Coarse digital calibration	Yes	No
Time stamp/tamper event EXTI line	EXINT 21	EXINT 19
Alarm interrupt channel	ERTC_Alarm IRQ	
Time stamp/tamper event interrupt channel	TAMPER IRQ	ERTC_IRQ

4.2.10 USART interface

 The AT32F421 series retains all the USART functions of the AT32F415 series, and adds the TX/RX SWAP feature (enabled by the register control bit SWAP). The SWAP allows to switch TX and RX pins, which is suitable for USART modes such as asynchronization, synchronization, single-wire half-duplex, smart card and IrDA.

4.2.11 Security library interface

• The security library of the AT32F421 is optimized compared to AT32F415 series. The AT32F21 series security library is divided into read-only area and instruction area without any address restriction.

4.2.12 Additional WKUP pins

On top of the WKUP pin (WKUP1-PA0 pin of AT32F415), the AT32F421 also adds three WKUP pins dedicated to waking up from Standby mode. These four WKUP pins have their respective enable bits. When enabled, the wake-up event on the corresponding pin can wake up from Standby mode. It is possible to enable one or more wake-ups pins to wake up from Standby mode according to the actual application requirements.

4.2.13 Additional low-power consumption in Deepsleep mode

 In addition to the original internal voltage regulator switch (of AT32F415), the AT32F421 series also adds an extra low-power mode. This mode can further reduce power consumption of Deepsleep mode by lowering the output voltage of the voltage regular in the scenario when the internal voltage regulator is in low-power mode in Deepsleep mode.

4.2.14 Additional TMR15, TMR16 and TMR17 timers

• AT32F421 series adds TMR15, TMR16 and TMR17 timers.

4.2.15 Additional infrared transmitter

 This infrared transmitter is based on the internal connection between TMR16 and USART1, or USART2 and TMR17. The TMR17 is used to provide carrier frequency, while the TMR16, USART1 or USART2 provides the main signals to be sent. The infrared output signal is available on PB9 or PA13.

5 Revision history

Table 11. Document revision history

Date	Revision	Changes	
2022.02.28	2.0.0	Initial release	
2022.05.30	2.0.1	Removed the repeated contents in Section 2.	

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY's products and services, and ARTERY assumes no liability whatsoever relating to the choice, selection or use of the ARTERY products and services described herein.

No license, express or implied, to any intellectual property rights is granted under this document. If any part of this document deals with any third party products or services, it shall not be deemed a license grant by ARTERY for the use of such third party products or services, or any intellectual property contained therein, or considered as a warranty regarding the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

Unless otherwise specified in ARTERY's terms and conditions of sale, ARTERY provides no warranties, express or implied, regarding the use and/or sale of ARTERY products, including but not limited to any implied warranties of merchantability, fitness for a particular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right.

Purchasers hereby agrees that ARTERY's products are not designed or authorized for use in: (A) any application with special requirements of safety such as life support and active implantable device, or system with functional safety requirements; (B) any air craft application; (C) any automotive application or environment; (D) any space application or environment, and/or (E) any weapon application. Purchasers' unauthorized use of them in the aforementioned applications, even if with a written notice, is solely at purchasers' risk, and is solely responsible for meeting all legal and regulatory requirement in such use.

Resale of ARTERY products with provisions different from the statements and/or technical features stated in this document shall immediately void any warranty grant by ARTERY for ARTERY products or services described herein and shall not create or expand in any manner whatsoever, any liability of ARTERY.

© 2022 Artery Technology -All rights reserved