

MG0022

Migration Guide

Migrating from GX32E230 to AT32L021

Introduction

This migration guide is written to help users with the analysis of the steps required to migrate from an existing GX32E230 series to AT32L021 series. It brings together the most important information and lists the vital aspects that need to be taken into account.

To move an application from GX32E230 series to AT32L021 series, users have to analyze the hardware and software migration.

Applicable products:

Part number

AT32L021xx

Contents

1	Sim	Similarities and differences between AT32L021 and GX32E2304			
	1.1	Overview of similarities	4		
	1.2	Overview of differences	4		
2	Har	dware migration	6		
3	Soft	tware migration	7		
	3.1	Peripheral comparison	7		
	3.2	Memory mapping	7		
	3.3	Functional differences	8		
		3.3.1 CRM	8		
		3.3.2 PLL	8		
		3.3.3 DMA	8		
		3.3.4 ADC	8		
		3.3.5 USART	8		
		3.3.6 Flash memory	9		
		3.3.7 SPI	9		
		3.3.8 RTC	9		
		3.3.9 I2C	9		
		3.3.10 PWC	9		
		3.3.11 Security library (sLib)	9		
		3.3.12 GPIO	10		
	3.4	Peripheral enhancement	10		
		3.4.1 CAN	10		
		3.4.2 USART	10		
4	Rev	ision history	11		

2

Y5

List of tables

Table 1. Differences between AT32L021 and GX32E230	4
Table 2. Peripheral compatibility analysis	7
Table 3. Memory map differences	7
Table 4. CRM differences	8
Table 5. ADC differences	8
Table 6. Flash memory differences	9
Table 7. Document revision history	11

1 Similarities and differences between AT32L021 and GX32E230

AT32L021 series microcontrollers are basically compatible with the GX32E230 series, and provide many enhanced features, some of which are different from GX32E230. The differences between them are detailed in this document.

1.1 Overview of similarities

- Pin definition: Pin definitions are identical for the same packages. For extended peripherals, define the alternate functions of the pins.
- Compiler tools: identical, for example, Keil and IAR.

1.2 Overview of differences

	AT32L021	GX32E230
Core	Cortex-M0+	Cortex-M23
Voltage range	1.71 V~3.6 V	1.8 V~3.6 V
System clock	Max. frequency 80 MHz, APB1 80 MHz,	Max. frequency 72 MHz, APB1 72 MHz,
	APB2 80 MHz	APB2 72 MHz
Boot Memory	4 KB, support Flash memory content CRC	3 KB
Flash memory	6.4 ms	1.1 ms
sector erase time		
Flash memory mass	8 ms	4 ms
erase time		
SRAM size	All 8 KB, extendable up to 9 KB	4/6/8 KB by part number
GPIO controller	Dedicated GPIO bus	AHB bus
GPIO locking	All GPIOs can be locked.	Only PA and PB can be locked.
PLL	Frequency multiplication factors from 31x to	Integer multiplication
	500x; frequency division factor from 1 to	
	15.	
Quad SPI interface	NA	1
in master mode		
l ² S	Up to 2	1
CAN	1	NA
USART	4	2
Comparator (CMP)	NA	1
Temperature sensor	NA	Support
I ² C wakeup from	Support	Not support
Deepsleep mode		
Wake up from	17 us	17.1 us
Deepsleep mode		
Wake up from	72 us	77.5 us
Standby mode		

Table 1. Differences between AT32L021 and GX32E230

Migrating from GX32E230 to AT32L021

	AT32L021	GX32E230
Run mode	12.7 mA@80 MHz	8.5 mA@72 MHz
Power consumption	10.2 mA@80 MHz	7.4 mA@72 MHz
in Sleep mode		
Power consumption	9.24 uA	25.5 uA
in Deepsleep mode		
Power consumption	1.24 uA	3.8 uA
in Standby mode		
Operating	-40 to +105 °C	-40 to +85 °C
temperature		
Packages	Support QFN20, not support LGA20	Support LGA20, not support QFN20

2 Hardware migration

The migration from GX32E230 to AT32L021 series is simple as they are pin-to-pin compatible for the same packages.

3 Software migration

3.1 Peripheral comparison

There are some differences between AT32L021 and GX32E230 in terms of peripherals, some of which are new designs for AT32L021 series. Therefore, it is necessary to modify these peripherals or use a new peripheral driver for brand-new design during the application-level program development.

Derinherel	AT32L021 GX32E230	Compatibility		
Peripheral		Pinout	Firmware driver	
SPI	Y	Y	Partially same	Partial compatibility
WWDT	Y	Y	NA	Full compatibility
WDT	Y	Y	NA	Full compatibility
DEBUG	Y	Y	NA	Partial compatibility
CRC	Y	Y	NA	Full compatibility
EXINT	Y	Y	Identical	Partial compatibility
DMA	Y	Y	NA	Partial compatibility
TMR	Y	Y	Identical	Partial compatibility
PWC	Y	Y	NA	Partial compatibility
USART	Y	Y	Identical	Incompatible
l ² C	Y	Y	Identical	Partial compatibility
ADC	Y	Y	Identical	Partial compatibility
RTC	Y	Y	Identical	Partial compatibility
FLASH	Y	Y	NA	Partial compatibility
GPIO	Y	Y	Identical	Partial compatibility
CMP	NA	Y	NA	Incompatible
CAN	Y	NA	NA	Partial compatibility
HWDIV	Y	NA	NA	Incompatible
SCFG	Y	Y	NA	Partial compatibility

Table 2. Peripheral compatibility analysis

3.2 Memory mapping

AT32L021 architecture is highly compatible with GX32E230, except the distribution of peripheral addresses and buses as shown in Table 3.

Desinhered	AT32L021		GX32E230	
Peripheral	Bus	Base address	Bus	Base address
HWDIV	AHB	0x40030000	NA	NA
CMP	NA	NA	APB2	0x40010000
CAN		0x40006400		
USART4	APB1	0x40004C00	NA	NA
USART3		0x40004800		

Table 3. Memory map differences

3.3 Functional differences

This section describes the peripheral differences between AT32L021 and GX32E230.

3.3.1 CRM

• The differences related to CRM in the AT32L021 series versus GX32E230 are listed below.

Clock source	AT32L021	GX32E230
HICK	48 MHz RC divided by 6	8 MHz RC
HEXT	4-25 MHz	4-32 MHz
HICK28	NA	28 MHz RC for ADC
HICK48	48 MHz RC	NA
CLKOUT	ADCCLK, SYSCLK, LICK, LEXT, HICK,	HICK28, LICK, LEXT, HICK, HEXT, PLL,
	HEXT, PLL/2, PLL/4	PLL/2

Table 4. CRM differences

3.3.2 PLL

- Configure the PLL_FREF parameters (CRM_PLL[26:24]) according to the actually selected PLL clock source before configuring and enabling PLL.
- AT32L021 series supports flexible PLL frequency configuration (multiplication factor ranging from 31x to 500x, and division factor ranging from 1 to 15), while the GX32E230 series only supports integer multiplication.

3.3.3 DMA

• The difference related to DMA in AT32L021 series versus GX32E230 series is the DMA request mapping. AT32L021 supports flexible DMA request mapping, which makes DMA channel configuration more flexible, while GX32E230 supports fixed DMA request mapping, which means that each peripheral has a fixed DMA channel to manage requests.

3.3.4 ADC

• The differences related to ADC in AT32L021 series versus GX32E230 series are listed below.

ADC	AT32L021	GX32E230
Clock	APB clock	Dual clock domains (APB and HSI28)
Precharge	Support	Not support
Temperature sensor	No internal temperature sensor	With an internal temperature sensor

Table 5. ADC differences

3.3.5 USART

 There are big differences between the embedded USART peripheral of AT32L021 versus GX32E230. The architecture, features and programming interface are different. Therefore, any code written for the GX32E230 series using the I²C needs to be rewritten to run on the

AT32L021 series.

3.3.6 Flash memory

• The Flash memory differences between AT32L021 and GX32E230 are shown below.

Table 6	5. Flash	memory	differences
---------	----------	--------	-------------

SYSCLK range	AT32L021	GX32E230
Zero wait	0 MHz < SYSCLK <= 32 MHz	0 MHz < SYSCLK <= 24 MHz
One wait	32 MHz < SYSCLK <= 64 MHz	24 MHz < SYSCLK <= 48 MHz
Two waits	64 MHz < SYSCLK <= 80 MHz	48 MHz < SYSCLK <= 72 MHz

3.3.7 SPI

- AT32L021 removes the following SPI features versus GX32E230:
 - 1. NSSP mode configuration
 - 2. TX/RX buffers
 - 3. SPI1 master mode extended QSPI
 - 4. Configurable frame size

AT32L021 has additional features as follows:

- 1. SPI can be used as I²S feature
- 2. Support real-time synchronization between I²S WS and Data
- 3. SPI speed up to 36 MHz
- 4. PCLK/3 for SPI

3.3.8 RTC

• AT32L021 only supports tamper detection 0 (tamper0), not tamper1, compared to GX32E230.

3.3.9 I2C

- There are big differences between the I²C interface of AT32L021 versus GX32E230. The architecture, features and programming interface are different.
- AT32L021 supports Deepsleep wakeup through I²C1 interface.

3.3.10 PWC

• The PWC module of AT32L021 is basically the same as GX32E230 PWC, except that AT32L021 has an additional WKUP4 pin.

3.3.11 Security library (sLib)

 Security library (sLib) feature is provided to prevent important IP-code from being modified or read by end applications so as to enhance security level.

3.3.12 GPIO

• AT32L021 provides more 5V-tolerant input pins compared to GX32E230, except PC14 and PC15 pins (the input level of these pins should not exceed V_{DD} + 0.3 V).

3.4 Peripheral enhancement

This section introduces enhanced peripherals of AT32L021 series compared to GX32E230.

3.4.1 CAN

• The AT32L021 series has one CAN interface (2.0B Active), with 256 bytes of dedicated SRAM.

3.4.2 USART

• Add USART3 and USART4.

4 Revision history

Table 7. Document revision history

Date	Version	Revision note
2024.01.25	2.0.0	Initial release.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY's products and services; ARTERY assumes no liability for purchasers' selection or use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous representation in any forms. If any part of this document involves third party's products or services, it does NOT imply that ARTERY authorizes the use of the third party's products or services, or permits any of the intellectual property, or guarantees any uses of the third party's products or services or intellectual property in any way.

Except as provided in ARTERY's terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty, relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a particular purpose (based on the corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other intellectual property right.

ARTERY's products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements on product function safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other applications that may cause injuries, deaths or property damages. Since ARTERY products are not intended for the above-mentioned purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with all statutory and regulatory requirements regarding these uses.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and ARTERY disclaims any responsibility in any form.

© 2024 ARTERY Technology – All Rights Reserved