

MG0023 Migration Guide

Migrating from AT32F415 to AT32F423

Introduction

This migration guide is written to help users with the analysis of the steps required to migrate from an existing AT32F415 series to AT32F423 series. It brings together the most important information and lists the vital aspects that need to be taken into account.

To move an application from AT32F415 series to AT32F423 series, users have to analyze the hardware and software migration.

Applicable products:

Product series AT32F423xx

Contents

1	Sim	Similarities and differences between AT32F423 and AT32F415				
	1.1	Overv	<i>r</i> iew of similarities	5		
	1.2	Overv	view of differences	5		
2	Har	dware	migration	7		
3	Boo	ot mode	e compatibility	8		
4	Soft	ware n	nigration	9		
	4.1	Periph	neral comparison	9		
	4.2	Functi	ional differences	10		
		4.2.1	Memory mapping	10		
		4.2.2	Interrupt vectors	12		
		4.2.3	ADC interface	14		
		4.2.4	CAN interface	15		
		4.2.5	CRM interface	15		
		4.2.6	DMA interface	16		
		4.2.7	Flash interface	16		
		4.2.8	ERTC interface	16		
		4.2.9	EXINT interrupt source selection	16		
		4.2.10	GPIO interface	17		
		4.2.11	I ² C interface	17		
		4.2.12	2 IOMUX	17		
		4.2.13	PWC interface	18		
		4.2.14	SPI interface	18		
		4.2.15	Security library interface	18		
		4.2.16	TMR interface	19		
		4.2.17	WDT interface	19		
		4.2.18	USART interface	19		
	4.3	Periph	neral enhancement	19		
		4.3.1	AT32F423 additional WKUP pins	19		
		4.3.2	AT32F423 infrared transmitter	20		

Migrating from AT32F415 to AT32F423

5	Revision h	istory	22
	4.3.10	AT32F423 GPIO toggle function	21
	4.3.9	AT32F423 SPI TI mode	21
	4.3.8	AT32F423 full-duplexed I2S function	20
	4.3.7	AT32F423 DAC peripheral	20
	4.3.6	AT32F423 XMC peripheral	20
	4.3.5	AT32F423 OTGFS device endpoints and host channels	20
	4.3.4	AT32F423 HICK auto clock calibration module	20
	4.3.3	AT32F423 TMR 16-bit RPR register	20

Y5

List of tables

Table 1. Differences between AT32F423 and AT32F415	5
Table 2. Pinout comparison	7
Table 3. AT32F415 Boot mode	8
Table 4. AT32F423 Boot mode	8
Table 5. Peripheral compatibility analysis	9
Table 6. Memory map differences	
Table 7. Interrupt vector differences	
Table 8. ADC interface differences	14
Table 9. Flash memory address differences	
Table 10. PWC interface differences	
Table 11. Document revision history	

1 Similarities and differences between AT32F423 and AT32F415

AT32F423 series microcontrollers are generally compatible with the AT32F415 series except for some of its optimized peripherals that are not compatible by software. The differences between them are detailed in this document.

1.1 Overview of similarities

- Pin definition: The same packages have the same pin definitions. For extended peripherals, the alternate functions of the pins are defined.
- Compiler tools: identical, such as Keil, IAR, AT32 IDE

1.2 Overview of differences

	AT32F423	AT32F415
System clock	Max frequency 150 MHz, APB1 120 MHz, APB2 150 MHz	Max frequency 150 MHz, APB1 75 MHz, APB2 75 MHz
FPU (Floating point unit)	Support	Not support
Wake up from Deepsleep mode (LDO is in low-power mode)	500 us	360 us
Wake up from Standby mode	800 us	600 us
SRAM size	32/48 KB	32 KB
Bootloader	20 KB, support USART3	18 KB
16-bit timer	8	6
32-bit timer	1	2
Basic timer	2	-
ACC	Support	-
CMP	-	2
ADC	5.33 MSPS, 27 channels	2 MSPS, 16 channels
DAC	2 channels	-
DMA	Support DMAMUX	Not support DMAMUX
CAN	2	1
SPI/I2S	3	2
SDIO	-	1
USART	8	5

Table 1. Differences between AT32F423 and AT32F415

Migrating from AT32F415 to AT32F423

	AT32F423	AT32F415
XMC	Support	-
OTG device endpoint	8 x IN, 8 x OUT (include endpoint 0)	4 x IN, 4 x OUT (include endpoint 0)
Number of OTG host channels	16	8
Operating supply	2.4 V~3.6 V	2.6 V~3.6 V
VBAT	-	Support
Typical current in Run mode	20.4 mA@72Mhz with all peripherals enabled	24.6 mA@72Mhz with all peripherals enabled
Typical current in Sleep mode	16.5 mA@72Mhz with all peripherals enabled	19mA@72Mhz with all peripherals enabled
Typical current in Deepsleep mode (LDO is in low-power mode)	143 uA	680 uA
Typical current in Standby mode	5.4 uA	6.6 uA
Package	Max. LQFP100, introduce QFN36	Max. LQFP64

2 Hardware migration

AT32F423 series is generally pin-to-pin compatible with AT32F415 series for the same packages. As they differ in GPIO peripherals, it is necessary to refer to the corresponding Datasheet for more information on the peripheral functions of each pin.

AT32F423 series						AT32	2F415 seri	es	
LQFP64	LQFP48	QFN48	QFN32	Pin name	LQFP64	LQFP48	QFN48	QFN32	Pin name
5	5	5	2	PF0	5	5	5	2	PD0
6	6	6	3	PF1	6	6	6	3	PD1
18	-	-	-	Vss	18	-	-	-	PF4
19	-	-	-	Vdd	19	-	-	-	PF5
31	23	23	-	PF8	31	23	23	-	Vss
48	36	36	-	Vdd	48	36	36	-	PF7

Table	2.	Pinout	com	pariso	n
					12

3 Boot mode compatibility

In most cases, AT32F423 and AT32F415 series load a Boot mode on a system reset. However, for AT32F423 series, if embedded SRAM Boot mode is selected, the BOOT status is then locked. In this case, it is impossible to load a new Boot mode on a system reset unless a power-on reset occurs.

AT32F415 series observes the configuration of the Boot mode selection in *Table 3*. The BOOT0 and BOOT1 state correspond to the level on the BOOT0 and BOOT1 pins respectively.

Boot mode selection		Post modes	Description	
BOOT1	BOOT0	Boot modes	Description	
Х	0	Main Flash memory	Main Flash memory is selected as boot space	
0	1	Boot memory	Boot memory is selected as boot space	
1	1	Embedded SRAM	Embedded SRAM is selected as boot space	

Table 3. AT32F415 Boot mode

AT32F423 series observes the configuration of the Boot mode selection in *Table 4*. BOOT0 state corresponds to the level on the BOOT0 pin, while the nBOOT1 corresponds to the nBOOT1 bit value of the system configuration byte (SSB) within the User System Data (USD).

Table 4. AT32F423 Boot mode

Boot mode selection		Post modes	Description	
nBOOT1	BOOT0 BOOT modes		Description	
Х	0	Main Flash memory	Main Flash memory is selected as boot space	
1	1	Boot memory	Boot memory is selected as boot space	
0	1	Embedded SRAM	Embedded SRAM is selected as boot space	

4 Software migration

4.1 Peripheral comparison

AT32F423 series is generally compatible with AT32F415 series in terms of peripherals, except for a few function enhancements or new designs. Thus it is necessary to modify these peripherals or use new peripheral drivers for brand-new design during the application-level program development.

Deninkenel	AT225 422	AT225445	Compatibility		
Peripheral	AI 32F423	AI 32F415	Pinout	Firmware driver	
PWC	Y	Y	NA	Partial compatibility	
CRM	Y	Y	Identical	Partial compatibility	
CMP	NA	Y	NA	Incompatible	
FLASH	Y	Y	NA	Partial compatibility	
GPIO	Y	Y	Identical	Incompatible	
IOMUX	NA	Y	NA	Incompatible	
SCFG	Y	NA	NA	Incompatible	
EXINT	Y	Y	Identical	Partial compatibility	
DMA	Y	Y	NA	Partial compatibility	
CRC	Y	Y	NA	Full compatibility	
I2C	Y	Y	Identical	Incompatible	
USART	Y	Y	Identical	Partial compatibility	
SPI	Y	Y	Identical	Partial compatibility	
TMR	Y	Y	Identical	Partial compatibility	
WWDT	Y	Y	NA	Full compatibility	
WDT	Y	Y	NA	Full compatibility	
RTC	Y	Y	Identical	Partial compatibility	
ADC	Y	Y	Identical	Incompatible	
DAC	Y	NA	NA	Incompatible	
CAN	Y	Y	Identical	Full compatibility	
OTGFS	Y	Y	Identical	Partial compatibility	
ACC	Y	NA	NA	Incompatible	
IRTMR	Y	NA	NA	Incompatible	
SDIO	NA	Y	NA	Incompatible	
DEBUG	Y	Y	NA	Incompatible	
XMC	Y	NA	NA	Incompatible	

Toble F	Darinharal	aamnatihilit	, analysia
Table 5.	Peripheral	compatibility	analysis

4.2 Functional differences

This section describes the peripheral differences in the AT32F423 series versus AT32F415 series. The peripheral behavior of the AT32F423 series is detailed in the subsections below.

4.2.1 Memory mapping

• *Table* 6 presents the differences related to address mapping and bus distribution in AT32F423 versus AT32F415.

Derinheral	AT32F423		AT32F415	
Peripheral	Bus	Base address	Bus	Base address
XMC		0xA0000000	N/A	N/A
DMA2		0x40026400	-	0x40020400
DMA1	AHB	0x40026000		0x40020000
FLASH		0x40023C00	AHB	0x40022000
CRM		0x40023800		0x40021000
SDIO1	N/A	N/A		0x40018000
GPIOF		0x40021400	APB2	0x40011C00
GPIOE		0x40021000	N/A	N/A
GPIOD		0x40020C00		0x40011400
GPIOC	АПБ	0x40020800	4000	0x40011000
GPIOB		0x40020400	AP62	0x40010C00
GPIOA		0x40020000		0x40010800
ACC		0x40017400	N/A	N/A
TMR11		0x40014800		0x40015400
TMR10		0x40014400	APB2	0x40015000
TMR9		0x40014000		0x40014C00
EXINT	APB2	0x40013C00		0x40010400
SCFG		0x40013800	N/A	N/A
ADC		0x40012000	APB2	0x40012400
USART6		0x40011400	N/A	N/A
USART1		0x40011000		0x40013800
IOMUX	N/A	N/A	APB2	0x40010000
TMR1	APB2	0x40010000		0x40012C00
USART8		0x40007C00		
USART7		0x40007800		
DAC		0x40007400		
CAN2	APB1	0x40006800	N/A	N/A
CAN1		0x40006400		
I2C3		0x40005C00		
SPI3		0x40003C00		
CMP	N/A	N/A	APB1	0x40002400
TMR14		0x40002000		
TMR13	APB1	0x40001C00	N/A	N/A
TMR12		0x40001800		

Table 6. Memory map differences

Migrating from AT32F415 to AT32F423

Peripheral	AT32F423		AT32F415	
	Bus	Base address	Bus	Base address
TMR7		0x40001400		
TMR6		0x40001000		
TMR5	N/A	N/A	APB1	0x40000C00

4.2.2 Interrupt vectors

• *Table 7* presents the interrupt vector differences in AT32F423 series versus AT32F415 series.

Positio	AT32F423	AT32F415
n		
0	WWDT	WWDT
1	PVM	PVM
2	TAMPER	TAMPER
3	ERTC_WKUP	ERTC
4	FLASH	FLASH
5	CRM	CRM
6	EXINT0	EXINT0
7	EXINT1	EXINT1
8	EXINT2	EXINT2
9	EXINT3	EXINT3
10	EXINT4	EXINT4
11	DMA1_CH1	DMA1_CH1
12	DMA1_CH2	DMA1_CH2
13	DMA1_CH3	DMA1_CH3
14	DMA1_CH4	DMA1_CH4
15	DMA1_CH5	DMA1_CH5
16	DMA1_CH6	DMA1_CH6
17	DMA1_CH7	DMA1_CH7
18	ADC1	ADC1
19	CAN1_TX	CAN1_TX
20	CAN1_RX0	CAN1_RX0
21	CAN1_RX1	CAN1_RX1
22	CAN1_SE	CAN1_SE
23	EXINT9_5	EXINT9_5
24	TMR1_BRK_TMR9	TMR1_BRK_TMR9
25	TMR1_OVF_TMR10	TMR1_OVF_TMR10
26	TMR1_TRG_HALL_TMR11	TMR1_TRG_HALL_TMR11
27	TMR1_CH	TMR1_CH
28	TMR2	TMR2
29	TMR3	TMR3
30	TMR4	TMR4
31	I2C1_EVT	I2C1_EVT
32	I2C1_ERR	I2C1_ERR
33	I2C2_EVT	I2C2_EVT
34	I2C2_ERR	I2C2_ERR
35	SPI1	SPI1
36	SPI2	SPI2
37	USART1	USART1
38	USART2	USART2

Table 7. Interrupt vector differences

۲**۲<u>-</u> ۲۶<u>-</u> ۲۶<u>-</u>**

Migrating from AT32F415 to AT32F423

Positio	AT32F423	AT32F415
n		
39	USART3	USART3
40	EXINT15_10	EXINT15_10
41	ERTCAlarm	ERTCAlarm
42	OTGFS1_WKUP	OTGFS1_WKUP
43	TMR12	Reserved
44	TMR13	Reserved
45	TMR14	Reserved
46	Reserved	Reserved
47	Reserved	Reserved
48	Reserved	Reserved
49	Reserved	SDIO1
50	Reserved	TMR5
51	SPI3	Reserved
52	USART4	UART4
53	USART5	UART5
54	TMR6_DAC	Reserved
55	TMR7	Reserved
56	DMA2_CH1	DMA2_CH1
57	DMA2_CH2	DMA2_CH2
58	DMA2_CH3	DMA2_CH3
59	DMA2_CH4	DMA2_CH5_4
60	DMA2_CH5	Reserved
61	Reserved	Reserved
62	Reserved	Reserved
63	CAN2_TX	Reserved
64	CAN2_RX0	Reserved
65	CAN2_RX1	Reserved
66	CAN2_SE	Reserved
67	OTGFS1	OTGFS1
68	DMA2_CH6	Reserved
69	DMA2_CH7	Reserved
70	Reserved	CMP1
71	USART6	CMP2
72	I2C3_EVT	Reserved
73	I2C3_ERR	Reserved
74	Reserved	Reserved
75	Reserved	DMA2_CH7_6
76	Reserved	Reserved
77	Reserved	Reserved
78	Reserved	Reserved
79	Reserved	Reserved
80	Reserved	Reserved
81	FPU	Reserved

,**:17[**7]

Positio	AT32F423	AT32F415
n		
82	USART7	Reserved
83	USART8	Reserved
84	Reserved	Reserved
85	Reserved	Reserved
86	Reserved	Reserved
87	Reserved	Reserved
88	Reserved	Reserved
89	Reserved	Reserved
90	Reserved	Reserved
91	Reserved	Reserved
92	Reserved	Reserved
93	Reserved	Reserved
94	DMAMUX	Reserved
95	Reserved	Reserved
96	Reserved	Reserved
97	Reserved	Reserved
98	Reserved	Reserved
99	Reserved	Reserved
100	Reserved	Reserved
101	Reserved	Reserved
102	Reserved	Reserved
103	ACC	Reserved

4.2.3 ADC interface

• AT32F423 series embeds an enhanced ADC peripheral compared to AT32F415 series. *Table 8* presents the differences of ADC interface.

ADC	AT32F423		AT32F415	
Channel	Up to 27 channels		Up to 18 channels	
Resolution	6/8/10/12-bit		12-bit	
Max sampling	Up to 5.33 MSPS		Up to 2 MSPS	
frequency				
Oversampling	2 to 256 times hardware oversampling		Not support	
External	Regular group	Preempted group	Regular group	Preempted group
trigger				
	TMR1_TRGOUT	TMR1_CH2	TMR1_CH1	TMR1_TRGOUT
	TMR1_CH4	TMR1_CH3	TMR1_CH2	TMR1_CH4
	TMR2_TRGOUT	TMR2_CH4	TMR1_CH3	TMR2_TRGOUT
	TMR3_TRGOUT	TMR3_CH4	TMR2_CH2	TMR2_CH1
	TMR9_TRGOUT	TMR9_CH1	TMR3_TRGOUT	TMR3_CH4
	TMR1_CH1	TMR6_TRGOUT	TMR4_CH4	TMR4_TRGOUT
	EXINT_Line11	EXINT_Line15	EXINT_Line11	EXINT_Line15

Table 8. ADC interface differences

	OCSWTRG	PCSWTRG	TMR1_TRGOUT	TMR1_CH4
			OCSWTRG	PCSWTRG
			TMR1_TRGOUT	TRM1_CH1
Conversion stop	Conversion can be sequence of conversior	stopped during the	Not support	
Overflow detection	Support overflow detection (with flag bits and interrupts)		Not support	
Data read	Support CPU read and	DMA read	Support CPU read and	DMA read
	Support DMAMUX, flexible channel configuration, refer to DMA interface for details		DMA supports fixed mapping mode, refer details	mapping and flexible to DMA interface for

4.2.4 CAN interface

 AT32F423 CAN peripheral is the same as that of AT32F415, and they are software compatible. The only difference is that the AT32F423 features two CAN interfaces versus AT32F415.

4.2.5 CRM interface

- AT32F423 CRM (clock and reset management) interface has big differences with that of AT32F415. They are software-incompatible. The main differences are as follows:
 - 1. PLL configuration:

AT32F423: its PLL uses flexible mode, the frequency multiplication format is

PLLCLK = (PLL reference clock * PLL_NS) / (PLL_MS * PLL_FR);

AT32F415: its PLL supports both flexible mode and common mode.

The frequency multiplication format in flexible mode is PLLCLK = (PLL reference clock * PLL_NS) / (PLL_MS * PLL_FR), while the format in common mode is PLLCLK = PLL reference clock * PLL_MULT.

2. Peripheral clock low-power mode: peripheral clock can be disabled when entering Sleep mode.

AT32F423: each of its peripherals can be configured with this feature individually;

AT32F415: only its SRAM and Flash can be configured with this feature.

- 3. For AT32F423, when HEXT or HICK is directly used as system clock, it is also possible to first divide this clock and then provide it to system clock
- 4. For AT32F423, HICK 48 MHz can be directly provided to USB, but not for AT32F415.
- References are made to the following documents:

《AN0158_AT32F423_CRM_Start_Guide》

《AN0117_AT32F415_CRM_Start_Guide》

4.2.6 DMA interface

- AT32F415 DMA supports fixed mapping and flexible mapping modes;
 AT32F423 DMA supports DMAMUX with more functions (flexible mapping, DMA request synchronization, DMA request generation)
- References are made to the following documents:

«AN0160_AT32F423_DMA_Application_Note»

4.2.7 Flash interface

• *Table 9* presents the differences between AT32F423 series and AT32F415 in terms of Boot memory and User System Data area.

Table 9. Flash memory address differences

Memory	AT32F423	AT32F415
Boot memory	0x1FFFA400-0x1FFFF3FF	0x1FFFAC00-0x1FFFF3FF
User System Data area	0x1FFFF800-0x1FFFF9FF	0x1FFFF800-0x1FFFFBFF

 If Bootloader is not needed for users, the boot memory can be one-time configurable to general user program and data area.

4.2.8 ERTC interface

- The differences related to ERTC peripheral in AT32F423 versus AT32F415 include:
 - 1. AT32F423 offers tamper detection 2 feature, but not for AT32F415
 - 2. AT32F423 has no VBAT pin and thus cannot be supplied via this pin;

AT32F415 has VBAT pin and thus can be supplied via this pin

4.2.9 EXINT interrupt source selection

 In AT32F423 series, external interrupt configuration mode presents some differences vs. AT32F415 series:

AT32F415 uses IOMUX_EXINTCx register to configure external interrupts;

AT32F423 uses SCFG_EXINTCx register to configure external interrupts.

Actually, only the mapping addresses of the EXINTCx registers have changed, but the logics of EXINTx configuration are the same.

4.2.10 GPIO interface

 The differences related to GPIO peripheral in the AT32F423 series versus AT32F415 series are as follows:

AT32F423:

The GPIOs are configured through three registers, GPIOx_CFGR register (configure IO operating mode), GPIOx_OMODE register (configure output mode) and GPIOx_PULL register (configure IO pull-up/pull-down). The IO pull-up/pull-down configurations apply to the general-purpose input/output mode and alternate function mode.

A few FTf GPIO is capable of outputting 20 mA low level.

AT32F415:

AT32F415 series GPIOs are configured through two registers, GPIOx_CFGLR and GPIOx_CFGHR. These registers can be used to configure IO operating mode, output mode and IO pull-up/pull-down mode. But its IO pull-up/pull-down configurations only apply to input mode.

• References are made to the following documents:

《AN0119_AT32F413_415_GPIO_Application_Note》 《AN0162 AT32F423 GPIO Application Note》

4.2.11 I²C interface

 In AT32F423 series, the I2C interface presents big differences vs. AT32F415 series. They are software-incompatible.

The control logic of AT32F423 I2C is made easier than that of AT32F415. Also, the AT32F423 has an additional Fast Mode Plus (up to 1 MHz) and low-power wakeup feature compared with AT32F415 I2C.

References are made to the following documents:

«AN0159_AT32F423_I2C_Application_Note»

4.2.12 IOMUX

 The differences related to IOMUX peripheral in the AT32F423 series versus AT32F415 series are described as follows:

AT32F423:

For AT32F423 series, for any peripherals to use alternate functions, the I/O must be configured as alternate functions.

Pin multiplexing and mapping are configured through the GPIOx_MUXL and GPIOx_MUXH registers.

AT32F415:

Whether or not the I/O should be used as alternate function depends on the peripheral mode used. For example, USART Tx pin should be configured as alternate function push-pull, while the USART Rx should be input floating or input pull-up.

To optimize the number of peripheral I/O functions on different packages, it is possible to remap some alternate functions to other pins. The IOMUX_REMAPx register is used to configure the alternate functions of the peripheral pins.

 References are made to the following documents: «AN0119_AT32F413_415_GPIO_Application_Note» «AN0162_AT32F423_GPIO_Application_Note»

4.2.13 PWC interface

Table 10. PWC interface differences

PWR	AT32F423	AT32F415
Standby mode wakeup pin	4 x WKUP pins	1 x WKUP pin
	Support extra low-power mode of the	Not support
	internal voltage regulator in Deepsleep	
Internal voltage regulator	mode.	
	The low-power consumption level of	
	internal voltage regulator is settable.	

• *Table 10* presents the differences between the PWR interface of the AT32F423 series and AT32F415 series.

Compared to AT32F415, the AT32F423 series adds three more Standby-mode WKUP pins in order to adapt to diverse application scenarios.

- AT32F423 series supports extra low-power consumption mode of internal voltage regulator after Deepsleep mode is entered. By doing so, it is possible to save more power in Deepsleep mode.
- In AT32F423 series, the internal voltage regulator is configurable in order to further optimize the tradeoff between MCU performance and power consumption.

4.2.14 SPI interface

- AT32F423 series offers newly-added features on the back of AT32F415 series:
 - 1. Support divided-by-3 setting using the MDIV3EN bit in SPI_CTRL2 register
 - 2. TI mode, enabled through the TIEN control bit in SPI_CTRL2 register.
 - 3. I2S full-duplex mode, enabled through the I2S_FD bit in the SCFG_CFG2 register.

4.2.15 Security library interface

- The security library of the AT32F423 series is optimized compared to the AT32F415, with slight differences.
- References are made to the following documents:
 «AN0164_AT32F423_Security_Library_Application_Note»

4.2.16 TMR interface

- In AT32F423 series, the TMRx_RPR register (repetition period register) of the advanced timer TMR1 is extended to 16-bit
- In AT32F423 series, TMR9/10/11/12/13/14 boast repetition period register (TMRx_RPR) that is extended to 16-bit
- In AT32F423 series, TMR9/10/11/12/13/14 support DMA-related features, which are configured through the TMRx_DMACTRL and TMRx_DMADT registers
- In AT32F423 series, TMR9/10/11/12/13/14 support break-related features, which are configured through the OEN/ AOEN/ BRKV/ BRKEN bits in TMRx_ BRK register
- In AT32F423 series, TMR1/9/10/11/12/13/14 support break input filtering feature, which is configured through the BKF bit in TMRx_ BRK register

4.2.17 WDT interface

 In AT32F423 series, WDT peripheral supports windowed WDT feature, meaning that it can stop counting in Deepsleep and Standby modes. Except for this point, other WDT functions are the same as those of AT32F415, and both series are software-compatible. AT32F423 is downward compatible with AT32F415.

4.2.18 USART interface

- In addition to the original features of AT32F415, the AT32F423 offers additional features below:
 - 1. Serial interface low-power wakeup feature
 - 2. TX/RX SWAP feature
 - 3. RS485 communication mode
 - 4. 7-bit data length mode

4.3 **Peripheral enhancement**

4.3.1 AT32F423 additional WKUP pins

 Apart from retaining the original WKUP pins (WKUP1-PA0) of AT32F415, the AT32F423 series offers three more Standby-mode WKUP pins.

WKUP pin 2-PC13

WKUP pin 6-PB5

WKUP pin 7-PB15

These three WKUP pins have their respective enable bits (refer to the corresponding datasheet and technical manual for more information). When enabled, the wake-up events on the corresponding pin can wake up Standby mode. It is also possible to enable one or more wake-ups pins to wake up Standby mode according to the actual requirements.

4.3.2 AT32F423 infrared transmitter

• This infrared transmitter is based on the internal connection between TMR110 and USART1, or USART2 and TMR11.

The TMR11 is used to provide carrier frequency, while the TMR10, USART1 or USART2 provides the main signals to be sent.

The infrared output signal is available on PB9 or PA13.

4.3.3 AT32F423 TMR 16-bit RPR register

• The RPR (repetition period) register of TMR is extended from 8-bit to 16-bit. In single-pulse mode, it is possible to configure RPR register to achieve multi-pulse function, sending up to 65536 pulses at one time.

4.3.4 AT32F423 HICK auto clock calibration module

• HICK auto clock calibration (ACC) module uses the SOF signal (1 ms period) coming from the USB module as a reference signal to perform HICK clock sampling and calibration.

This feature is mainly used to provide the USB device with 48 MHz±0.25% accuracy clock. Crystal-less mode is supported.

4.3.5 AT32F423 OTGFS device endpoints and host channels

- In device mode, OTGFS supports one bidirectional control endpoint, seven IN endpoints and seven OUT endpoints.
- In host mode, OTGFS supports 16 host channels.

4.3.6 AT32F423 XMC peripheral

- Support address lines/data lines to be used as storage memory, such as multiplexed PSRAM
- Support LCD parallel interface, such as 8080 mode

4.3.7 AT32F423 DAC peripheral

• DAC peripheral is embedded in the AT32F423 series. This DAC has DMA underflow detection function, with the DMA underflow flag being stored in the DAC_STS register. Besides, the DAC comes with DAC underflow error interrupt enable bit and interrupt vector.

4.3.8 AT32F423 full-duplexed I2S function

• AT32F423 offers I2S full-duplex function compared to AT32F415. It is possible to use any two of I2S1/I2S2/I2S3 to achieve full-duplexed I2S function according to actual requirements.

After I2S full-duplexed mode is configured, the IO remap relationship on the host side (I2S1/I2S2) remains unchanged. The SCK and WS of I2S2/I2S3 (as device) are connected internally to the SCK and WS of the host. The SD line on the device side is remapped to I2Sext_SD, and the previous IO remap relationship on the device side is deactivated, with the corresponding IOs being released.

4.3.9 AT32F423 SPI TI mode

• AT32F423 supports SPI TI mode vs. AT32F415.

The SPI interface of AT32F423 supports TI protocols. After TI mode is enabled, SPI interface communications follow strictly with the TI protocols, including generating communication clocks and CS signals that are compatible with polarity phase characteristics.

4.3.10 AT32F423 GPIO toggle function

 In AT32F423 series, the GPIO bits can be toggled by writing "1" to a certain bit in the GPIO TOGR register. By doing so, the corresponding bits in the ODT (output data) register will be reversed to their original values.

5 Revision history

Table 11. Documen	t revision	history
-------------------	------------	---------

Date	Revision	Changes
2023.01.13	2.0.0	Initial release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY's products and services, and ARTERY assumes no liability whatsoever relating to the choice, selection or use of the ARTERY products and services described herein.

No license, express or implied, to any intellectual property rights is granted under this document. If any part of this document deals with any third party products or services, it shall not be deemed a license grant by ARTERY for the use of such third party products or services, or any intellectual property contained therein, or considered as a warranty regarding the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

Unless otherwise specified in ARTERY's terms and conditions of sale, ARTERY provides no warranties, express or implied, regarding the use and/or sale of ARTERY products, including but not limited to any implied warranties of merchantability, fitness for a particular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right.

Purchasers hereby agrees that ARTERY's products are not designed or authorized for use in: (A) any application with special requirements of safety such as life support and active implantable device, or system with functional safety requirements; (B) any air craft application; (C) any automotive application or environment; (D) any space application or environment, and/or (E) any weapon application. Purchasers' unauthorized use of them in the aforementioned applications, even if with a written notice, is solely at purchasers' risk, and is solely responsible for meeting all legal and regulatory requirement in such use.

Resale of ARTERY products with provisions different from the statements and/or technical features stated in this document shall immediately void any warranty grant by ARTERY for ARTERY products or services described herein and shall not create or expand in any manner whatsoever, any liability of ARTERY.

© 2023 Artery Technology -All rights reserved