# #1RIERY 雅特力

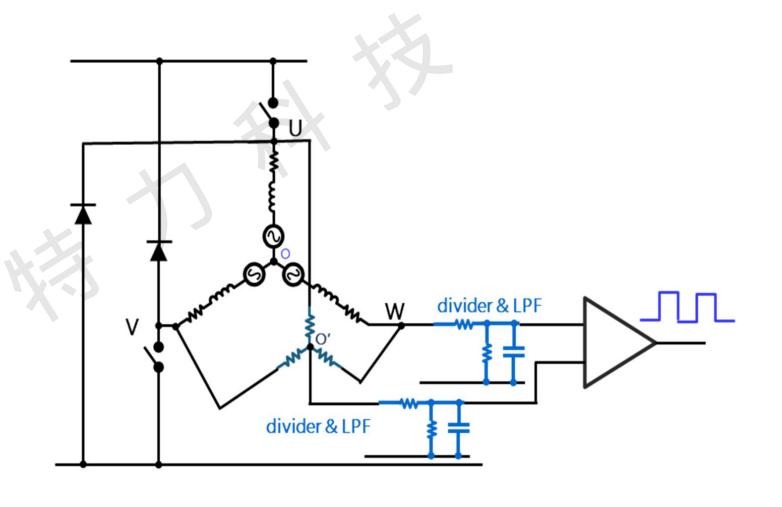
# AT32电机库示范讲解 - BLDC 无感控制

2.6 (四) 13:30-15:30 在线培训

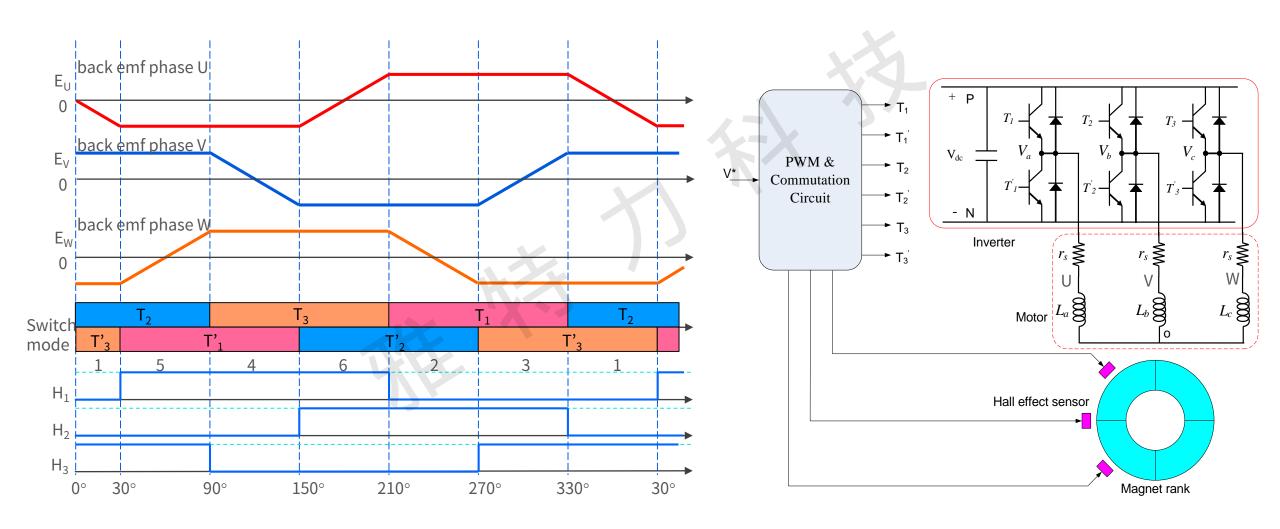
主讲: 电机应用软件资深工程师 林明赞 博士

# TIRE TO THE AT32 MCU电机库应用培训

2025.02.06 活动议程 —

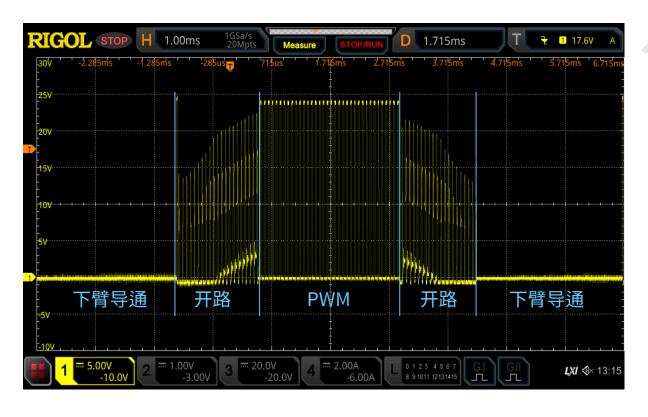

| 时间           | 主题                       | 讲师                        |
|--------------|--------------------------|---------------------------|
| 13:30 -14:30 | BLDC无感控制原理与无感电机库架构解说     | 电机应用软件<br>资深工程师<br>林明赞 博士 |
|              | 中场休息                     |                           |
| 14:40 -15:30 | AT32 电机库BLDC无感控制快速上手操作解说 | 电机应用软件<br>资深工程师<br>林明赞 博士 |
|              |                          |                           |

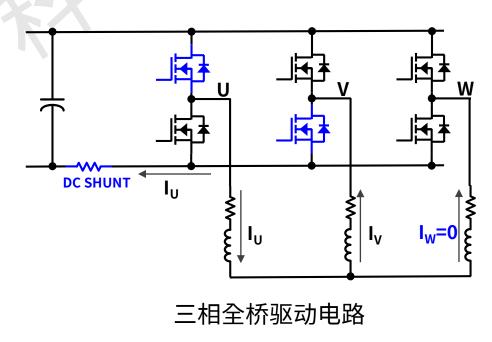
# 直流无刷电机 无感控制原理




#### 直流无刷电机无感控制

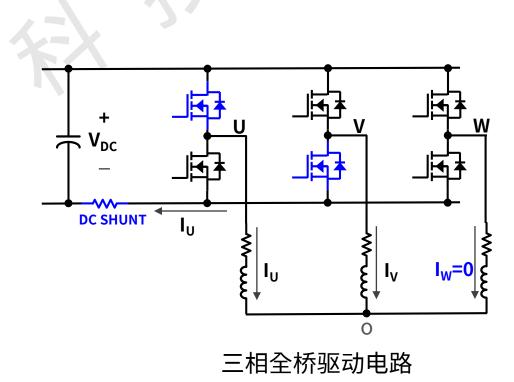
- 优点
  - 降低成本与简化接线
  - 提高可靠度
  - 适用于噪声干扰环境
- 缺点
  - 低速控制困难
  - 启动较困难
  - 换相误差较大





### 直流无刷电机120°导通换相 (6-Step)



#### 直流无刷电机端电压

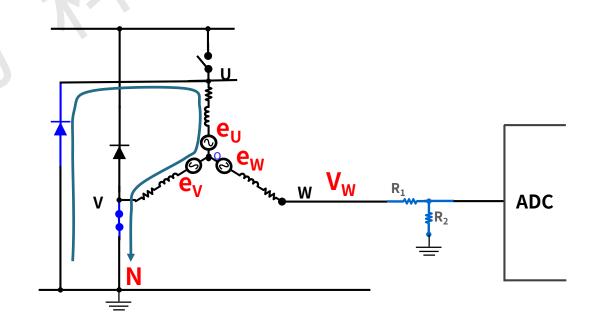

• 当开路相电流为零时可以量测到该相反电势





#### 直流无刷电机120°驱动电气方程式

- 无刷电机三相电气方程式  $V_{DC} = R I_U + L I_U / dt + e_U + V_o$   $0 = R I_V + L I_V / dt + e_V + V_o$   $V_W = e_W + V_o$
- 因  $I_U = -I_V$ ,  $V_{DC} = e_U + e_V + 2V_o$   $V_o = (e_W + V_{DC})/2$   $V_W = e_W + V_o$

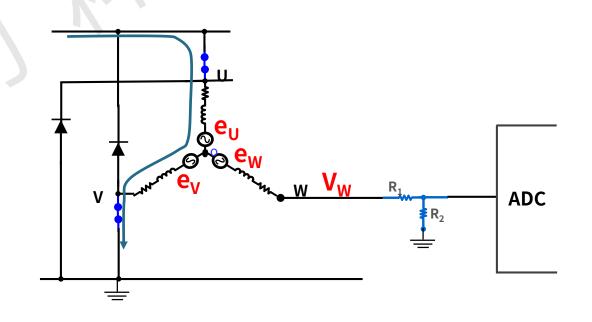



#### ADC取样:在PWM OFF时侦测反电势

· 在低速时PWM占空比较小,故可选择在PWM OFF时侦测反电势

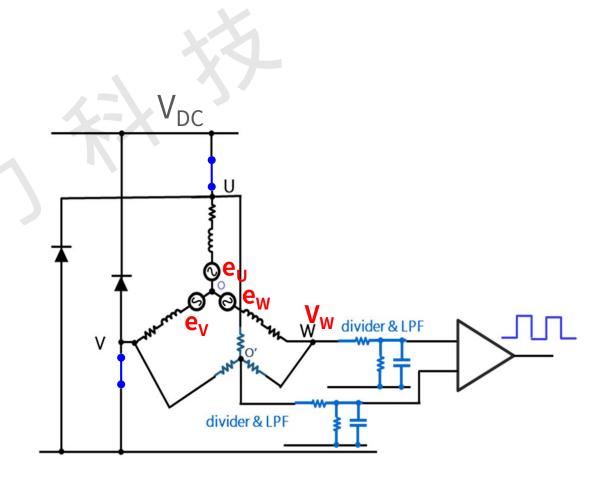
#### PWM OFF 时的等效方程式

$$0 = e_U + e_V + 2V_o$$
  
 $V_o = -(e_U + e_V)/2$   
 $V_o = (e_W)/2$   
 $V_W = e_W + V_o = 1.5 e_W$ 



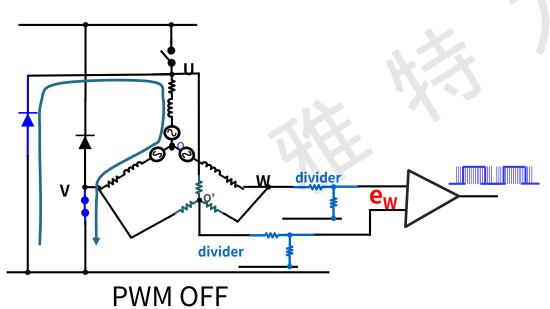

#### ADC取样:在PWM ON时侦测反电势

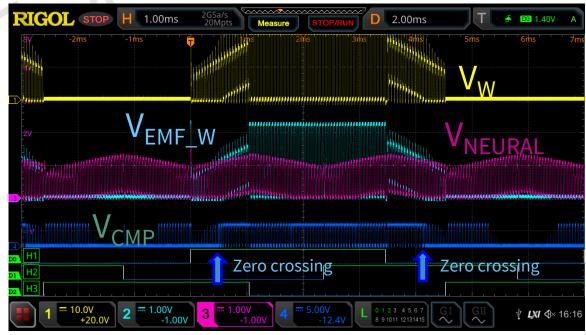
· 在高速时PWM占空比较大,故可选择在PWM ON时侦测反电势


#### PWM ON 时的等效方程式

$$V_{DC} = e_U + e_V + 2V_o$$
  
 $V_o = -(e_U + e_V)/2 + V_{DC}/2$   
 $V_o = (e_W)/2 + V_{DC}/2$   
 $V_W = e_W + V_o = 1.5 e_W + V_{DC}/2$ 

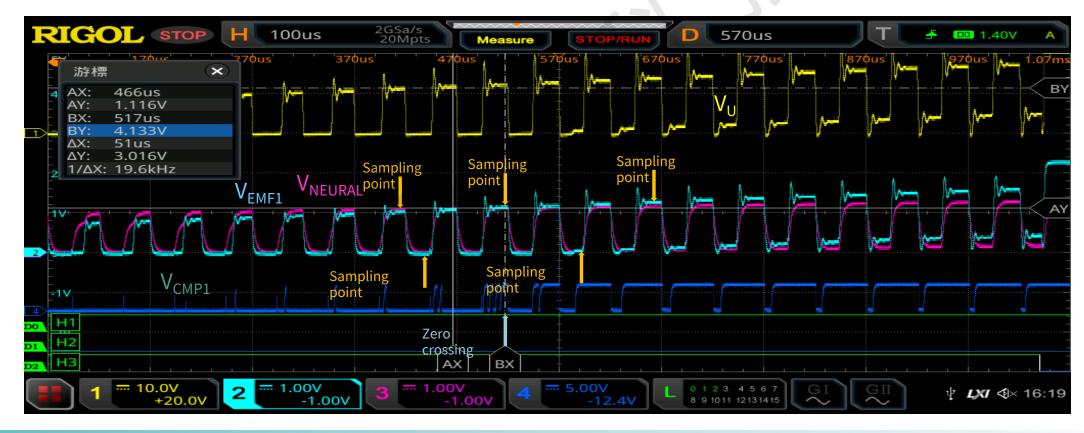



#### 虚拟中性点比较法


- 虚拟中性点方程式
  - $V_{o'} V_{DC} + V_{o'} + V_{o'} V_W = 0$
  - ♦  $3V_{o'} = V_{DC} + V_{W}$
  - $\bullet$   $3V_{o'} = e_U + e_V + 2V_O + e_W + V_O$
  - ♦  $3V_{o'} = 3V_{o}$
- ◆ 开路相与虚拟中性点比较
  - $V_W = V_O + e_W$
  - $\bullet V_{o'} = V_O$
  - $\bullet V_W V_{o'} = e_W$

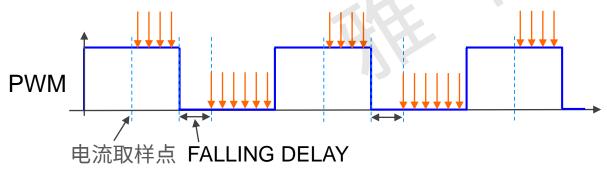


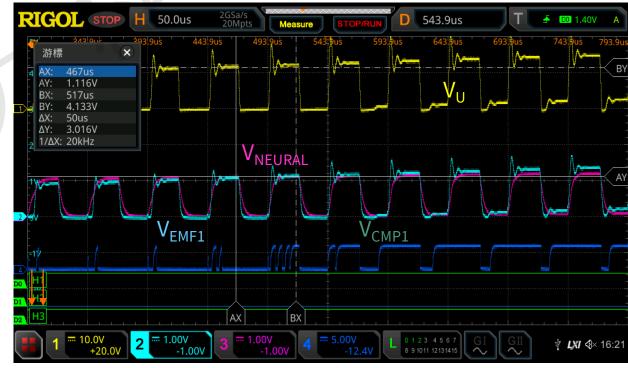
#### 无电容滤波的比较器侦测方法


- 因电机线圈与感测电路阻抗差异,浮接相与虚拟中性点间的电压无法同相位
- 比较器输入信号经RC滤波后,输出可得方波换相讯号,但高转速时换相时信号会有相位延迟
- 此时比较器输出带有PWM切换噪声
- 须适当选择取样时机,避开切换噪声



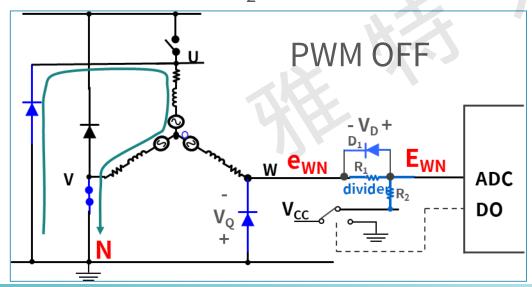


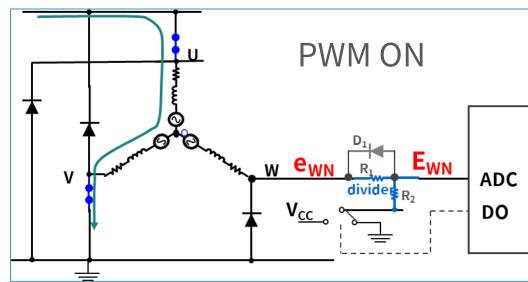

#### 比较器侦测时机


- PWM 占空比较小时,令取样点接近于 PWM (PWM OFF)周期结束点
- PWM 占空比较大时,令取样点接近于 PWM ON结束点



### 连续读取比较器输出


- 针对换相频率较高的高转速电机,可选择连续读取比较器输出
- 读取时机
  - PWM ON: 电流取样后
  - PWM OFF: PWM OFF后经一段 时间延迟
  - 连续读取间隔时间可设定






#### 专利技术 - BLDC 无感ADC取样低速控制

- 一般电机反电势须经分压后,才能由ADC采样侦测过零点
- ADC无法侦测负电压、低速时反电势小,零交越点侦测不准确
- 专利电路设计 于分压电阻 $R_1$ 并联二极管 $D_1$ , $R_2$ 经开关连接 $V_{CC}$ 电源或接地
  - PWM OFF时,  $R_2$ 经开关接 $V_{CC}$ ,二极管旁路 $R_1$ 提高感测电压信号与位准
  - PWM ON时, R2经开关接地,二极管截止,电路恢复为传统分压感测电路

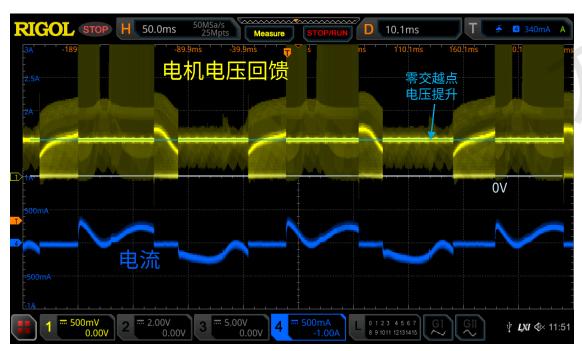




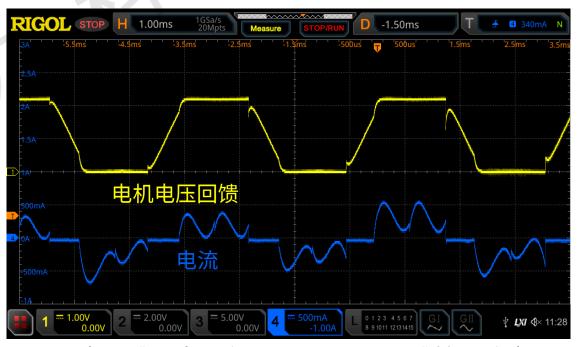
#### 专利技术 - BLDC 无感ADC取样低速控制

- 传统感测电路因输出的反电势电压小,零交越点侦测不准确,换相不稳定
- 专利电路可提升零交越点电压位准且不衰减反电势信号,换相准确稳定




传统感测电路在 200 rpm下无感控制响应

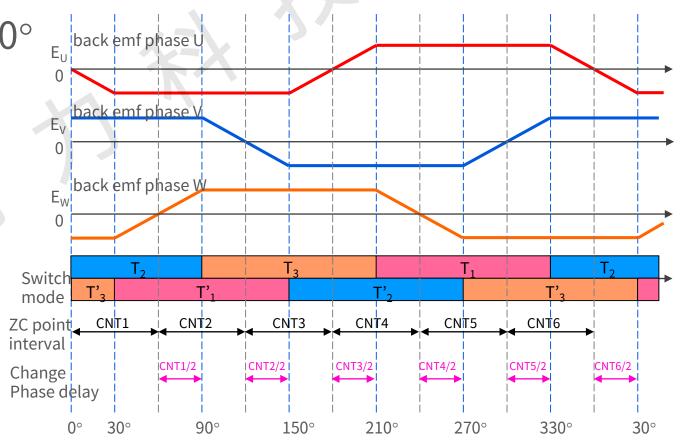



专利感测电路在 200 rpm下无感控制响应

#### 专利技术 - BLDC 无感ADC取样低速控制

- 专利电路可根据PWM占空比状态,决定分压电路连接VCC电压或者接地
- 可适用宽范围的高低速无刷电机转速控制

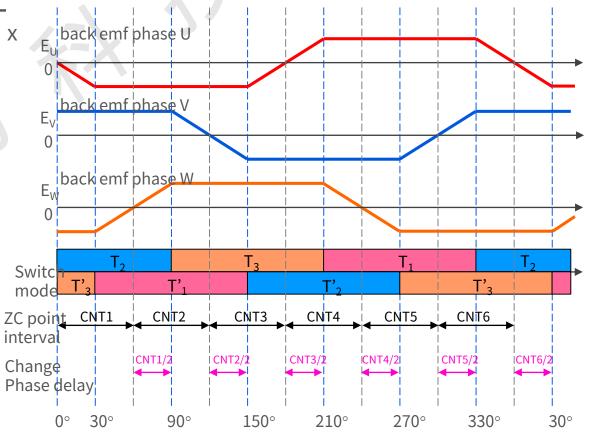



专利感测电路在 80 rpm下无感控制响应



专利感测电路在 4,200 rpm下无感控制响应

### 反电势零交越点后30°换相

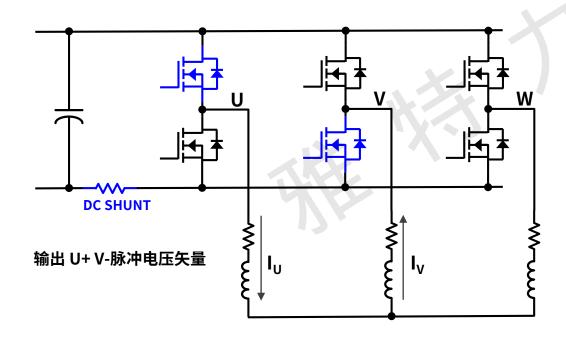

- 因换相点与反电势零交越点相差30°
- 各相反电势零交越点相差60°
- 故可利用定时器延迟最近 一次零交越点间隔时间 的一半后,进行换相

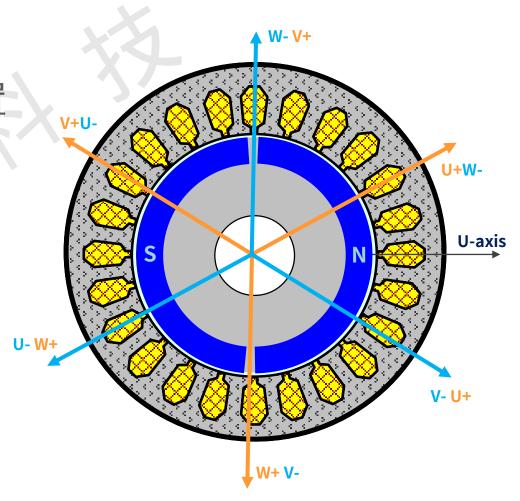


#### 转轴速度估测

- 根据最低转速的霍尔波宽决定补获定时器的计数频率周期T<sub>TMR</sub>
- · 记录每个零交越点间的时间计数值 CNT<sub>x</sub>
- 将6次计数值以移动平均计算均值  $CNT_{AVG} = AVERAGE(CNT_1 \sim CNT_6)$
- 计算转速

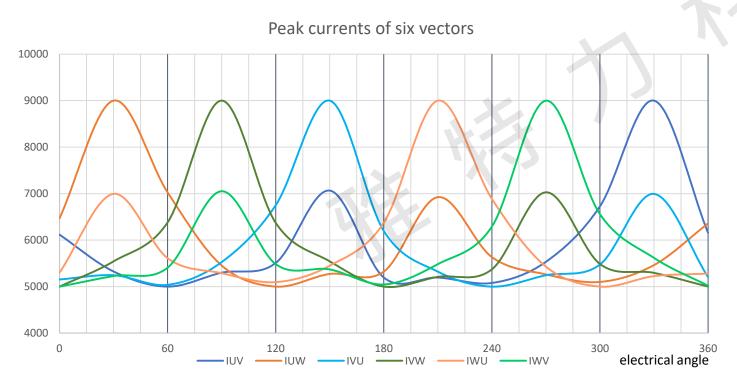
$$SPEED = \frac{MIN\_SPD\_CNT/2}{CNT_{AVG}}$$

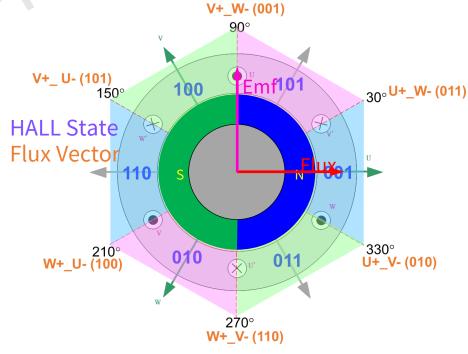




#### 无感控制由静止状态启动方式

- 开环启动(强制换相)
  - 依照固定的六步换相顺序,逐步增加换相频率,推动转子加速
  - 当电机转速足够高、反电动势信号可用时,切换为反电动势换相控制
- 转子对齐启动
  - 在特定线圈组施加直流电流,使转子朝向特定角度对齐
  - 于该角度以大电流启动,使电机转速够快而得以侦测反电势
- 转子初始角度侦测
  - 利用转子磁极在不同位置时,测量各矢量对应的电流变化来估算初始位置
  - 于该角度以大电流启动,使电机转速够快而得以侦测反电势

#### 转子初始位置侦测


- 依次输入6个两相脉冲电压矢量
- 根据对应的6个电流峰值估算转子位置

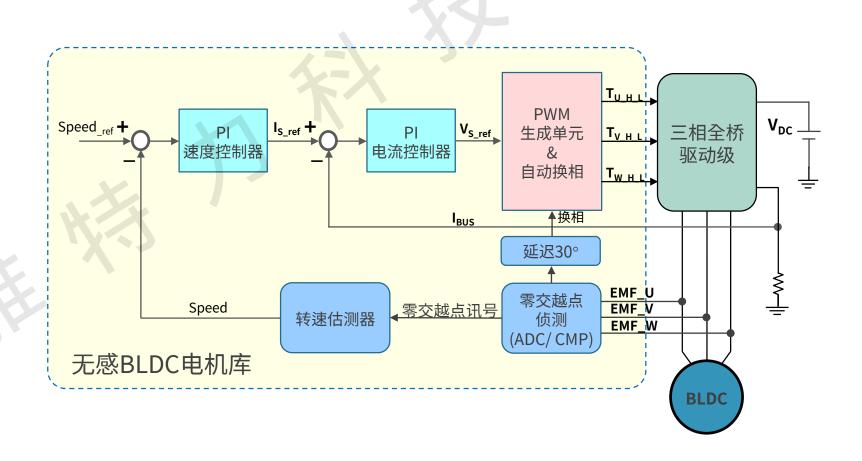





#### 转子初始位置侦测

- 依次输入6个两相脉冲电压矢量
- 根据对应的6个电流峰值与邻相电流估算转子位置



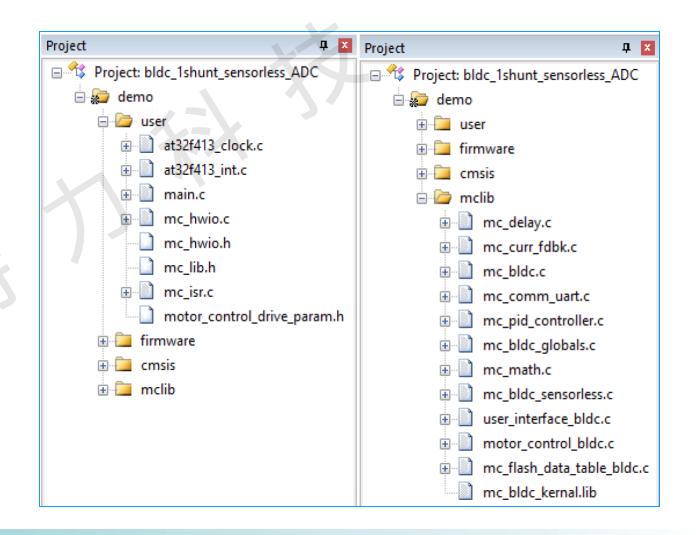



# BLDC无感电机库 架构解说



#### 无感 BLDC电机库

- 驱动方法
  - ▶ 120°方波控制
- 相电流检测方法
  - ▶ 单电阻电流检测
- 初始转子位置估测方法
  - 两相电压矢量转子初始角度估测
- 换相时机估测方法
  - ▶ 比较器侦测反电势零交越点
  - ➤ ADC回授感测反电势零交越点
- 可实现无传感器控制方法
  - ▶ 120°方波电压控制
  - ➤ 转矩控制 (120°方波电流控制)
  - > 转速控制
  - ▶ 回生刹车




### BLDC电机库控制技术与应用方案

|          | 应用产品        | 高速风机 | 低速风机 | 电动工具 | 链锯 | 滑板车<br>电动自行车 | 电摩 | 扫地机 |
|----------|-------------|------|------|------|----|--------------|----|-----|
| 两相驱动     | 120°导通法     | •    | •    | •    | -  | <b>\</b>     | •  | •   |
|          | 提前激磁弱磁控制    |      |      | •    |    |              |    |     |
| 控制回路     | 转矩控制        |      | •    | *    |    |              | •  |     |
|          | 速度控制        |      |      |      |    |              |    |     |
| 电流感测     | 单电阻电流感测     | •    | N.   | •    | •  | •            | •  | •   |
| 有传<br>感器 | 霍尔传感器       | 186  |      | •    | •  | •            | •  | •   |
| 无传<br>感器 | 转子初始角度侦测    |      | •    | •    |    |              | •  |     |
|          | 反电势零交越点信号回授 |      |      | •    |    |              |    |     |
|          | 反电势回授侦测零交越点 |      | •    |      | •  | •            | •  | •   |

#### 无感控制专案工程结构

- user 文件夹
  - 主程序、外设规划程序以及参数 定义头文件
- firmware 文件夹
  - MCU 外设驱动程序
- cmsis文件夹
  - CMSIS DSP函数程序
- mclib 文件夹
  - 为电机库程序包含PI控制函数、无感电机库函数、全局变量设定与通讯函数等等



#### BLDC无感控制程序流程图

#### mc\_hwio.c main.c 系统频率设定初始化 相关外设初始化 中断致能与优先序设定 PWM定时器初始化 Cmp 外部比较信号I/O初始化 3.3Vref 校准 比较器读取定时器初始化 adc-般誦道初始化 UART 外设初始化 adc抢占通道初始化 apio led 初始化 呼叫uart 初始化函数 电流零位校准 按钮I/O初始化 (mc\_motor\_control\_bldc.c) 3.3Vref 校准函数 控制参数初始化 电机参数鉴定初始化 (mc motor control bldc.c) 状态机变换前初始设定

mc\_isr.c

#### ADVTMR\_PWM\_CYCLE\_BRK\_IRQ

主中断:电流环计算、PWM更新、 、计算电流取样点、计算转子速度、 监测数据更新、电机参数鉴定、 霍尔学习处理、adc一般通道触发

#### ADC\_SHUNT\_SAMP\_READY\_IRQ

电流取样、反电势电压取样(ADC)、 读取比较器信号(CMP)

#### CHANGE\_PHASE\_IRQ

换相延迟时间中断函式

#### READ EMF IRQ

定时读取比较器信号中断函式

#### SysTick\_Handler

状态机处理、速度环计算、 过压欠压、MOS过温、电位计输入

#### mclib files

- · mc curr fdbk.c
- mc bldc.c
- · mc bldc sensorless.c
- mc\_pid\_controller.c
- mc\_bldc\_globals.c
- mc math.c
- mc user interface bldc.c
- mc\_motor\_control\_bldc.c
- mc\_delay.c
- mc\_flash\_data\_table.c
- · mc bldc kernel noFPU.lib

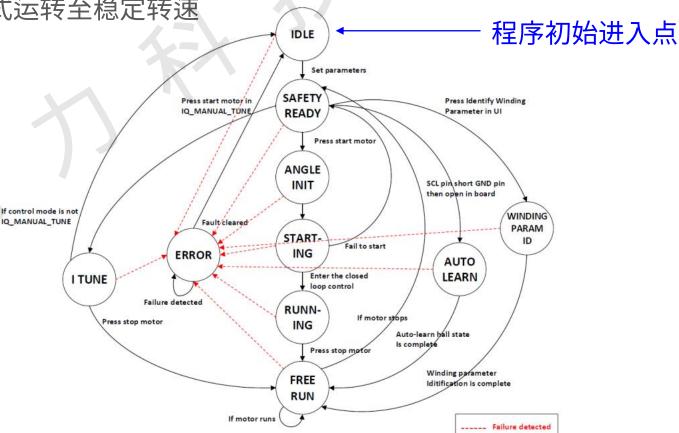
#### mc\_comm\_uart.c

- uart初始化
- uart tx dma初始化

COMM UART IRQHandler

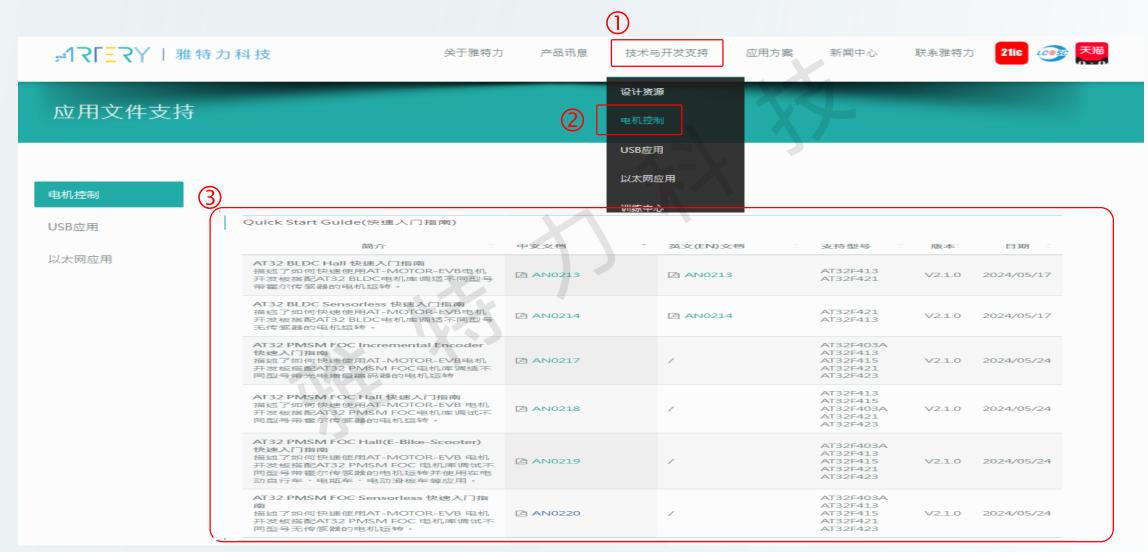
uart rx 中断函式

#### 程序状态机流程图


• ANGLE\_INIT:由静止状态启动(可使用三种不同启动方法)

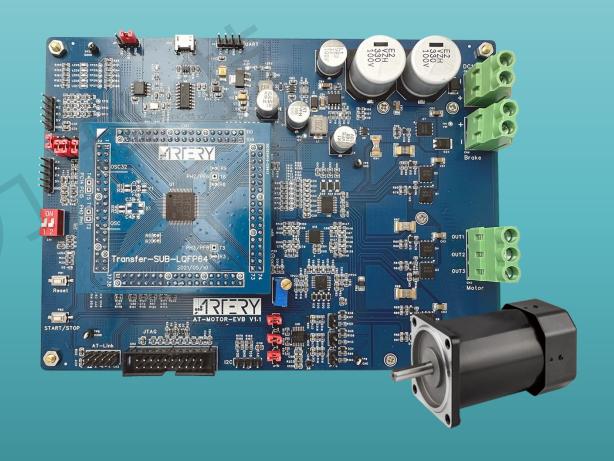
• STARTING:可采定电压或定电流方式运转至稳定转速

• RUNNING: 进入速度闭环


用户可于UI界面实时调整参数

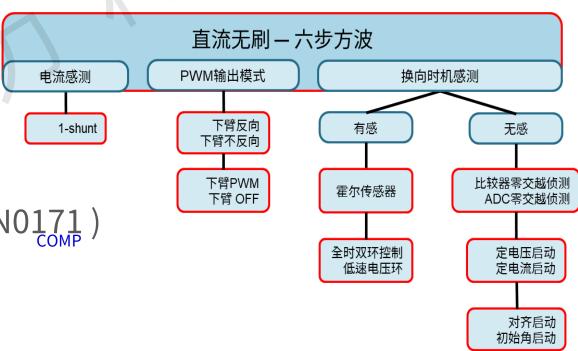
• 或用外部电位计改变命令






### 电机库下载



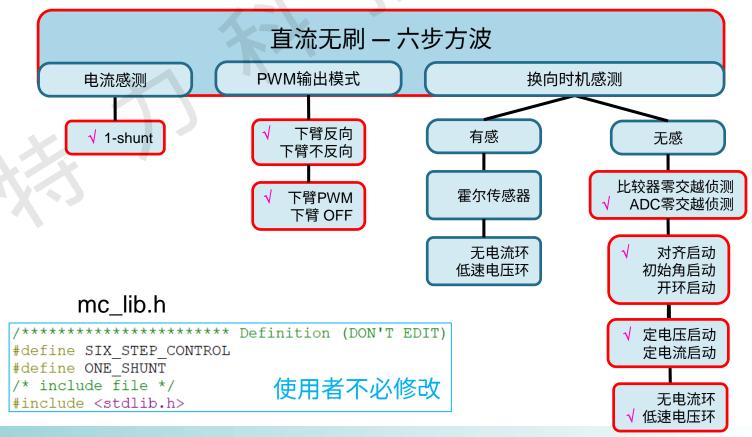

网址: https://www.arterytek.com/cn/support/motor\_control.jsp?index=0

# AT32 电机库 BLDC 快速上手 操作讲解



#### BLDC电机控制函式库支持

- 支援BLDC 6-step控制
- 提供AT32F421、AT32F413、AT32F415、AT32F425、AT32L021应用范例
- 支持免费AT32IDE编译环境
- 只须设定mc\_hwio\_v2(v1).h 和 motor\_control\_drive\_param.h头文件
- 宏定变量的说明可参阅 AT32 电机库使用指南(AN0064)
- 无感专案的说明可参阅(AN0170, AN0171)
- BLDC 无感快速入门指南(AN0214)




### 参数头文件 - 电机控制形式 (六步方波)

motor\_control\_drive\_param.h 控制型式

/\* internal clock or external crytal \*/ //#define INTERNAL CLOCK SOURCE /\* choose MOTOR EVB BOARD version \*/ #define AT MOTOR EVB V2 //#define AT\_MOTOR\_EVB\_V1 /\* mosfet low side complement(high side #define COMPLEMENT /\* gate driver low side inverting logic #define GATE DRIVER LOW SIDE INVERT /\* EMF conpensate function \*/ //#define EMF COMPENSATE /\* choose sensor \*/ //#define HALL SENSORS #define SENSORLESS #define BLDC\_SENSORLESS\_ADC //#define BLDC SENSORLESS COMP /\* choose remove current-loop-control or //#define WITHOUT CURRENT CTRL /\* choose low speed control or not \*/ #define LOW SPEED VOLT CTRL #if defined SENSORLESS /\* choose const current/voltage start-up //#define CONST CURRENT START #define CONST\_VOLTAGE\_START /\* choose how to start up \*/ //#define INIT ANGLE STARTUP #define ALIGN AND GO STARTUP //#define OPENLOOP STARTUP

● 选择宏定义宣告项目,完成电机控制形式设定



### 参数头文件 - 电机参数

motor\_control\_drive\_param.h

电机参数 (Motor-related parameter)

```
/* Motor parameters */
#define RS LL
                                    (1.89)
                                                    /* Stator resistance
#define LS LL
                                                    /* Stator inductano
                                    (0.002387)
#define POLE PAIRS
                                    (8/2)
#define KE
                                    (0.003437f)
                                                    /* Back EMF constar
#define NOMINAL CURRENT
                                    (1.7)
/* angle detect duty */
#define ANGLE INIT DETECT DUTY
                                    ((int16 t) (0.15*ANGLE INIT PERIOD))
#define ANGLE INIT I DIFF
                                    ((int16 t) 500)
/* hall learn table */
#if defined (SENSORLESS)
                                                /* Polarity, 0 or 1 */
#define HALL LEARN DIR
#define HALL LEARN 0 STATE
                                                 /* BH-CL */
#define HALL LEARN 1 STATE
                                                   BH-AL */
#define HALL LEARN 2 STATE
                                                 /* CH-AL */
#define HALL LEARN 3 STATE
                                                 /* CH-BL */
#define HALL LEARN 4 STATE
                                    (4)
                                                 /* AH-BL */
#define HALL LEARN 5 STATE
                                                 /* AH-CL */
#else
#define HALL LEARN DIR
                                                /* Polarity, 0 or 1 */
#define HALL LEARN 0 STATE
                                                /* BH-CL */
#define HALL LEARN 1 STATE
                                                /* BH-AL */
#define HALL LEARN 2 STATE
                                                /* CH-AL */
#define HALL LEARN 3 STATE
                                                /* CH-BL */
#define HALL LEARN 4 STATE
                                                /* AH-BL */
#define HALL LEARN 5 STATE
                                                /* AH-CL */
#endif
```

● POLE\_PAIRS: 电机极对数

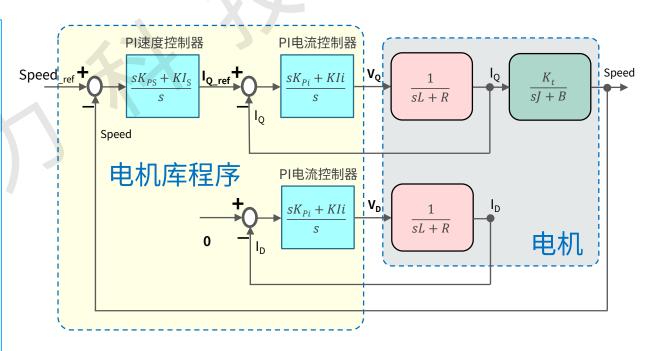
● RS\_LL:绕组线对线电阻值

● LS\_LL:绕组线对线电感值

● NOMINAL CURRENT: 额定电流

● HALL\_LEARN\_DIR: 霍尔自学习转向

● HALL LEARN X STATE: 霍尔状态对应


的矢量

### 参数头文件 - 控制环相关参数

#### motor\_control\_drive\_param.h

控制参数 (Control-related parameter)

| #define PWM FREQ                      | (15000) /*!< Hz */                        |
|---------------------------------------|-------------------------------------------|
| <pre>#define MOTOR_CONTROL_MODE</pre> | (motor_control_mode) (SPEED_CTRL)         |
| #define CTRL SOURCE                   | (ctrl source type) (CTRL SOURCE SOFTWARE) |
| #define UI UART BAUDRATE _            | (1500000UL) /*!< bit/s */                 |
| /* I-SAMPLE PARAMETER */              |                                           |
| #define I_SAMP_MIN_TIME               | (180) /*!< nsec */                        |
| #define I_SAMP_DELAY                  | (1000) /*!< nsec */ /                     |
| /* SPEED */                           |                                           |
| #define SPEED_FILTER_TIMES            | (6)                                       |
| #define SPD_LP_BANDWIDTH              | (300.0f) /* 2*pi*freq *                   |
| #define PWM_IN_FILTER_TIMES           | (5)                                       |
| #define SPD_CMD_FILTER_TIMES          | (5)                                       |
| /* SPEED PARAMETER */                 |                                           |
| #define MIN_SPEED_RPM                 | (10)                                      |
| <pre>#define MAX_SPEED_RPM</pre>      | (7200) /*!< rpm */                        |
| <pre>#define MAX_CCW_SPEED_RPM</pre>  | (7200) /*!< rpm */                        |
| <pre>#define ACC_SPD_SLOPE</pre>      | (5) /*!< rpm/ms */                        |
| #define DEC_SPD_SLOPE                 | (5)                                       |
| /* pi parameter */                    |                                           |
| <pre>#define PID_IS_KP_DEFUALT</pre>  | 6000                                      |
| #define PID_IS_KI_DEFUALT             | 11300                                     |
| #define PID_IS_KP_DIV                 | 1024                                      |
| #define PID_IS_KP_DIV_LOG             | LOG2 (PID_IS_KP_DIV)                      |
| #define PID_IS_KI_DIV                 | 32768                                     |
| #define PID_IS_KI_DIV_LOG             | LOG2 (PID IS KI DIV)                      |
|                                       |                                           |

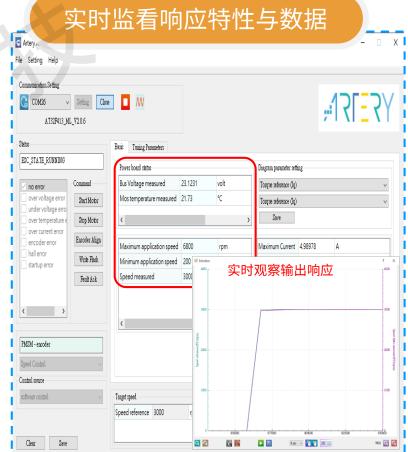


IS\_Kp = PID\_IS\_KP\_DEFUALT / PID\_IS\_KP\_DIV IS\_Ki = PID\_IS\_KI\_DEFUALT / PID\_IS\_KI\_DIV

#### 外设定义头文件 - 外设参数定义

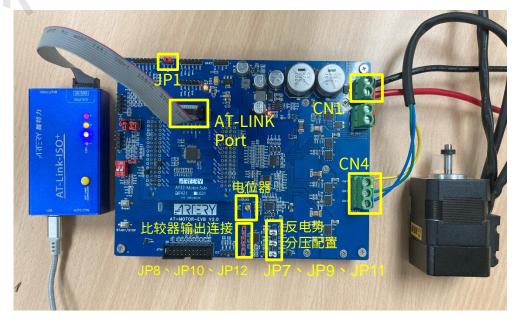
#### 外设定义参数 (mc\_hwio.h)

```
/* adc reading pin definition */
#define ADC CONVERTER
                                       ADC1
#define ADC_CONVERTER_CRM_CLK
                                       CRM_ADC1_PERIPH_CLOCK
#define ADC CONVERTER CRM CLK DIV
                                       CRM ADC DIV 8
#define ADC_SHUNT_SAMP_READY_IRQ
                                       ADC1 2 IRQHandler
#define ADC SHUNT SAMP READY IRQn
                                       ADC1 2 IRQn
#define ADC_ORDINARY_CH_LEN
/* dma1 ch1 for adc ordinary conversion */
#define ADC ORDINARY DMA CRM CLK
                                        CRM DMA1 PERIPH CLOCK
#define ADC_ORDINARY_DMA_CHANNEL
                                       DMA1 CHANNEL1
#define ADC ORDINARY DMA
#define ADC ORDINARY DMA FLEX
                                       DMA FLEXIBLE ADC1
#define ADC ORDINARY DMA FLEX CH
                                        FLEX_CHANNEL1
#define CURR PHASE A ADC CH
                                       ADC CHANNEL 0
#define CURR PHASE A ADC GPIO CRM CLK
                                       CRM GPIOA PERIPH CLOCK
#define CURR PHASE A ADC PORT
                                        GPIOA
#define CURR PHASE A ADC GPIO PIN
                                        GPIO PINS 0
#define CURR PHASE B ADC CH
                                       ADC CHANNEL 1
#define CURR PHASE B ADC GPIO CRM CLK
                                       CRM GPIOA PERIPH CLOCK
#define CURR PHASE B ADC PORT
                                       GPIOA
#define CURR PHASE B ADC GPIO PIN
                                       GPIO PINS 1
#define CURR PHASE C ADC CH
                                       ADC CHANNEL 2
#define CURR PHASE C ADC GPIO CRM CLK
                                       CRM GPIOA PERIPH CLOCK
#define CURR PHASE C ADC PORT
                                       GPIOA
#define CURR PHASE C ADC GPIO PIN
                                       GPIO PINS 2
```


#### 控制器MCU pin map

| Peripheral function | AT32F421C8T6 |              | AT32F413RCT7 |                 |  |  |
|---------------------|--------------|--------------|--------------|-----------------|--|--|
| VBAT                | 1            | VBAT         | 1            | VBAT            |  |  |
| STATUS_LED1         | 2            | PC13         | 2            | PC13            |  |  |
| STATUS_LED2         | 3            | PC14         | 3            | PC14            |  |  |
| STATUS_LED3         | 4            | PC15         | 4            | PC15            |  |  |
| ENCODER_A+          |              |              | 18           | TMR5_CH1(PF4)   |  |  |
| ENCODER_B+          |              |              | 19           | TMR5_CH2(PF5)   |  |  |
| MODE_SW1            | 35           | PF6          | 47           | PF6             |  |  |
| MODE_SW2            | 36           | PF7          | 48           | PF7             |  |  |
| OSC_IN              | 5            | OSC_IN       | 5            | OSC_IN          |  |  |
| OSC_OUT             | 6            | OSC_OUT      | 6            | OSC_OUT         |  |  |
| RESET               | 7            | NRST         | 7            | NRST            |  |  |
| SPEED_VR(F413)      |              |              | 8            | ADC12_IN10(PC0) |  |  |
|                     |              |              | 9            | ADC12_IN11(PC1) |  |  |
|                     |              |              | 10           | ADC12_IN12(PC2) |  |  |
|                     |              |              | 11           | ADC12_IN13(PC3) |  |  |
| VSSA                | 8            | VSSA         | 12           | VSSA            |  |  |
| VDDA                | 9            | VDDA         | 13           | VDDA            |  |  |
| CURR_FDBK1          | 10           | ADC_IN0(PA0) | 14           | ADC_IN0(PA0)    |  |  |
| CURR_FDBK2          | 11           | ADC_IN1(PA1) | 15           | ADC_IN1(PA1)    |  |  |
| CURR_FDBK3          | 12           | ADC_IN2(PA2) | 16           | ADC_IN2(PA2)    |  |  |
| IBUS_FDBK           | 13           | ADC_IN3(PA3) | 17           | ADC_IN3(PA3)    |  |  |
| BEMF1_LF            | 14           | ADC_IN4(PA4) | 20           | ADC_IN4(PA4)    |  |  |
| BEMF2_LF            | 15           | ADC_IN5(PA5) | 21           | ADC_IN5(PA5)    |  |  |
| BEMF3_LF            | 16           | ADC_IN6(PA6) | 22           | ADC_IN6(PA6)    |  |  |
| VBUS                | 17           | ADC_IN7(PA7) | 23           | ADC_IN7(PA7)    |  |  |
| ENCODER_Z+          |              |              | 24           | PC4             |  |  |
|                     |              |              | 25           | ADC_IN15(PC5)   |  |  |

#### UI程序与电机控制调校

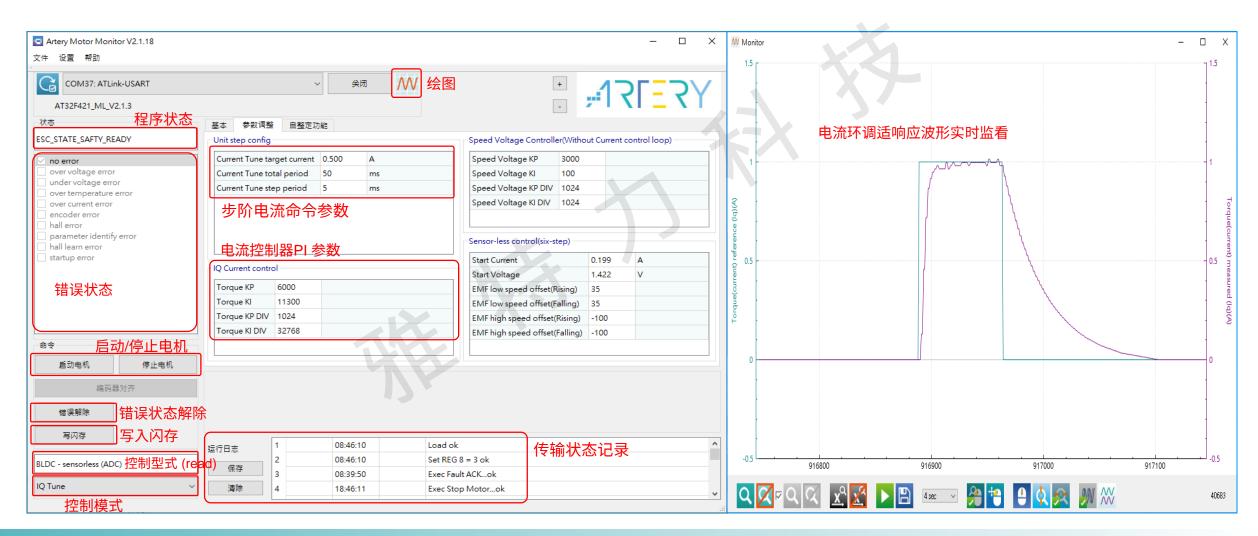






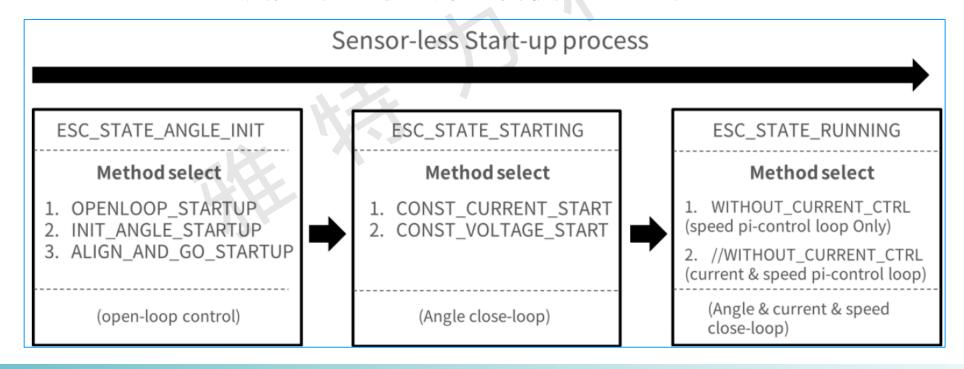

### 控制器接线

- 检查JP1 Boot0是否接地(GND)
- 根据母线电压选择是否短接JP7、JP9、JP11 (V<sub>BUS</sub> > 34V)
- 于比较器模式须将JP8、JP10、JP12短接,将比较器信号连接至MCU接脚
- 将AT-LINK连接到小板
- 连接电机线到CN4 (依线色)
- 连接电源供应器电源接线到CN1 (依标示)
- 设定电源供应器电压24V / 3A
- 开启电源供应器输出
- PC端执行上位机程序后建立联机 (ArteryMotorMonitor.exe)




电机与开发板接线图

#### 监控界面软件运行操作 - 自整定功能



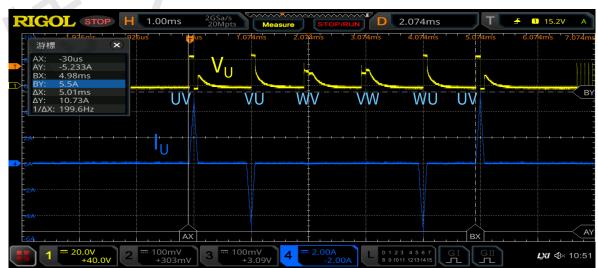

### 监控界面软件运行操作 - 电流环参数实时调整



#### 直流无刷电机无感启动流程

- ANGLE\_INIT:选择开环、初始角侦测或对齐转子方式启动
- STARTING:角度闭环,可选定电压或定电流方式运转进入速度闭环
- RUNNING: 进入速度闭环,可选择是否使用电流环




#### 启动参数介绍

• 对齐启动 (ALIGN\_AND\_GO\_STARTUP)

```
/* lock start-up */
#define LOCK_VOLT (2.5) /*!< V */ 转子对齐时间
#define LOCK_PERIOD (500) /*!< msec */ 转子对齐时间
```

• 初始角度侦测(INIT\_ANGLE\_STARTUP)

```
/* angle detect duty */ (0xFFF)
#define ANGLE_INIT_DETECT_DUTY ((int16_t)(0.15 *ANGLE_INIT_PERIOD))
#define ANGLE_INIT_I_DIFF ((int16_t) 500)
```



### STARTING\_STATE 角度闭环参数设定

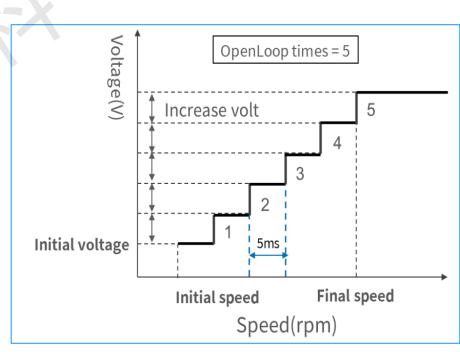
• 启动过程控制模式

```
#define START_CURRENT (0.6) /*!< A */
#define START_VOLTAGE (1.5) /*!< V */
```

• 进入RUNNING前换相次数

```
#define SENSE_HALL_TIMES (8)
#define REBOOT_PERIOD_MS (1000)
```




/\*!< msec \*/ 判定启动失败延迟时间



定电流启动模式

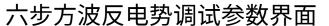
### 监控界面软件运行操作 – 开环控制

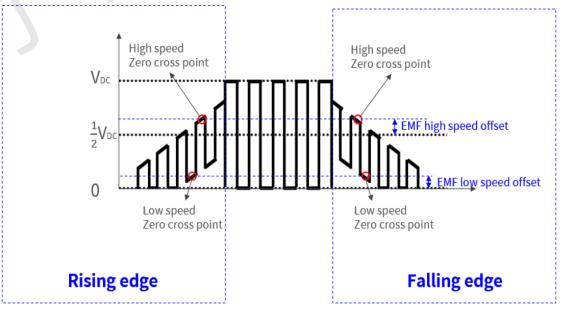




开环控制参数示意图

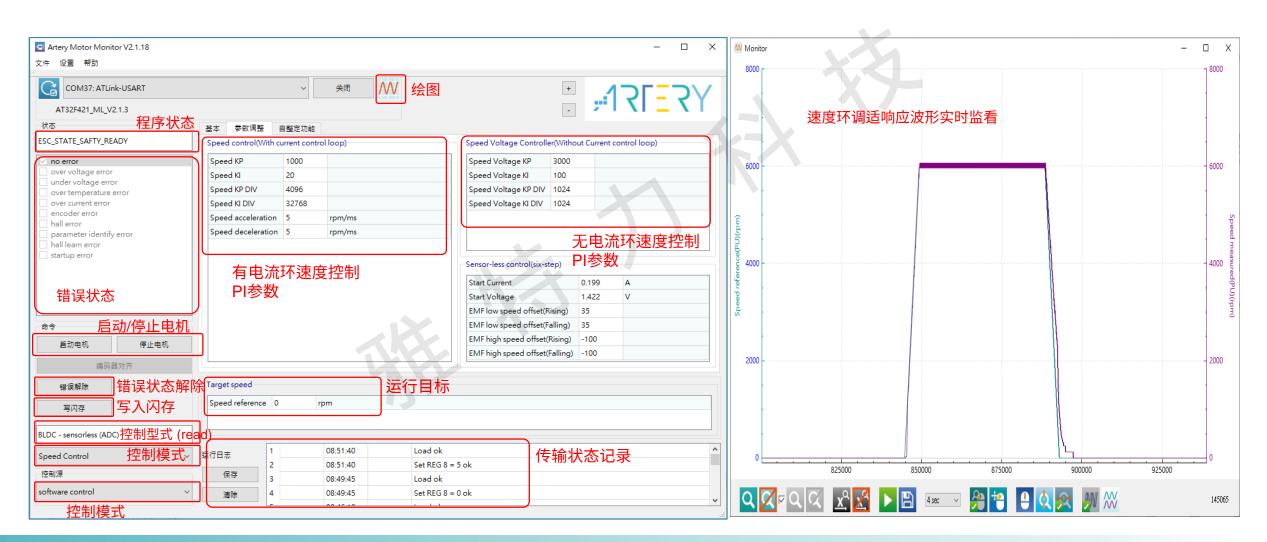
#### ADC零交越点侦测参数


- EMF low speed offset (rising, falling): PWM OFF 取样
- EMF high speed offset (rising, falling): PWM ON 取样
- 取样点切换磁滞设定


```
#define EMF_CHANGE_PERCENT_H (55) /*!< pwm duty(%) */
#define EMF_CHANGE_PERCENT_L (35) |/*!< pwm duty(%) */</pre>
```

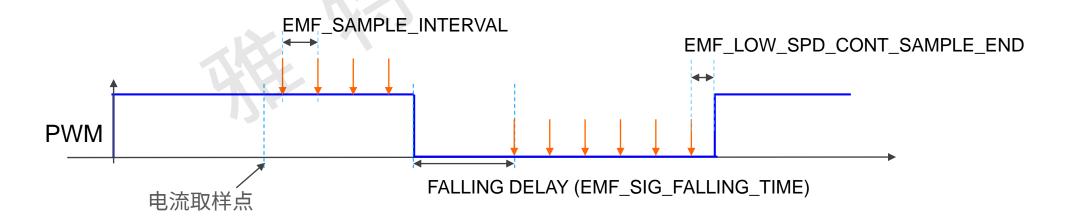
• 低速电压控制磁滞切换设定

```
#define HYSTERESIS_LOW_SPEED (800) /*!< rpm */
#define HYSTERESIS_HIGH_SPEED (1000) /*!< rpm */</pre>
```


| Start Current                  | 0.599 | A |
|--------------------------------|-------|---|
| tart Voltage                   | 1.429 | V |
| EMF low speed offset(Rising)   | 35    |   |
| EMF low speed offset(Falling)  | 35    |   |
| EMF high speed offset(Rising)  | -100  |   |
| EMF high speed offset(Falling) | -100  |   |

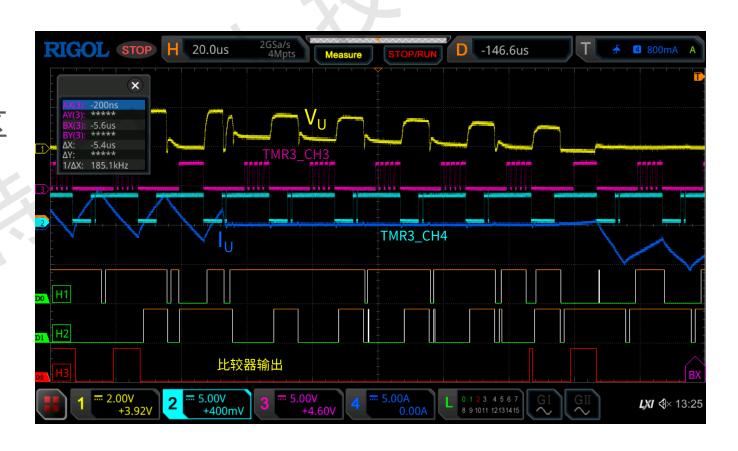





六步方波反电势调试参数示意图

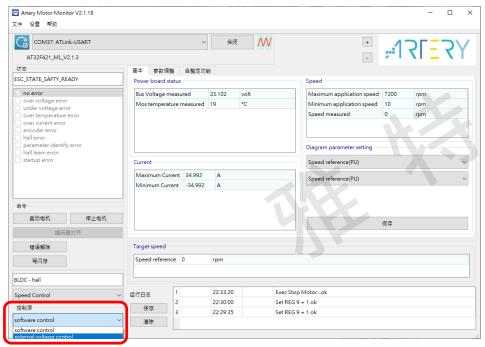
### 监控界面软件运行操作 - 速度环参数实时调整




#### 比较器连续读取模式参数设定

```
#ifdef EMF CONTINOUS SAMPLE
#define EMF SAMPLE INTERVAL
                                         (0.05 * PWM PERIOD) /*!< 5% pwm duty*/
                                                     /*!< the delay from ovf of emf timer to sense
#define SENSE GPIN DELAY
                                         (100)
#define EMF_LOW_SPD_CONT_SAMPLE_END
                                         (PWM PERIOD - EMF SAMPLE INTERVAL - SENSE GPIN DELAY)
#define EMF AVOID NOISE TIMES
                                         (5)
#else
#define EMF AVOID NOISE TIMES
                                         (1)
#endif
                                   (21.5)
                                                  /*!< usec */
#define EMF_SIG_FALLING_TIME
```




### 比较器连续读取实测图

- 使用定时器根据占空比决定 连续取样时机
- 本例中使用TMR3为定时器
- TMR3\_CH3触发PWM OFF区 间连续读取
- TMR3\_CH4触发PWM ON区 间连续读取



#### 外部命令控制

- 在控制源选择外部电压控制,SW1-1可设定转向
- 或在motor\_control\_drive\_param.h头文件中定义'CTRL\_SOURCE'







# 

Q&A

提问时间

10分钟

# #17 E R Y 联系我们



#### 重庆办公室

重庆市九龙坡区科城路60号康田西锦荟1栋10F +86-23-6868 8899

#### 苏州办公室

苏州市工业园区通园路699号港华大厦1501

+86-0512-6835 6375

#### 上海办公室

上海市长宁区仙霞路317号B栋512室

+86-0512-6835 6375

#### 深圳办公室

深圳市福田区天安数码城创新科技广场二期西座603室

+86-0755-8390 0669 分机62568

#### 台湾办公室

新竹市金山八街1号五楼 +886-3-577 8788

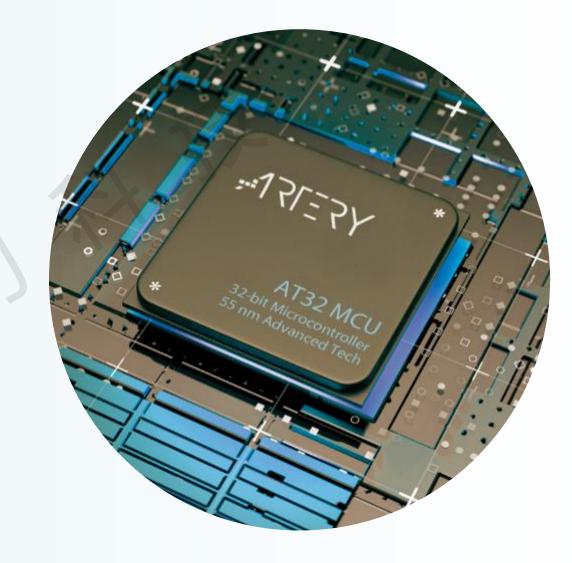






Linkedin

销售咨询 sales\_artery@arterytek.com 技术服务 support\_artery@arterytek.com


微信公众号

**English Website** 





## Thank you!

